تحديد عامل التركيب البنوي للمركب كوبالت زنك فرايتي وتيتنتل الباريوم

XRD باستخدام رواء سليم، الدكتور بدر الأعرج، الدكتور نوي محمد (تاريخ الإبداع 2 / 7 / 2013. قبل النشر في 24 / 9 / 2013)

ملخص

تم تحضير المركب (1-x)Co_{0.6}Zn_{0.4}Fe_{2}O_{4}/(x)BaTiO_{3} (x = 0, 0.25, 0.75, 1) طور فرايتي (كوبالت - زنك) وطور تيتنتل الباريوم بالطريقة السيراميكية المألوفة. وبعد ذلك أخذ طيف حبود أشعة - تم تحديد البارامترات التالية: عامل XRD للهيئة لو. لإيجاد الهداد الترمسي لخطوط X للعينة. وعُل في الدراسات التالية: عامل التعددية P، عامل الامتصاص للعينة (A(0)), وعامل الاهتزاز الحراري, TF استقطاب لورنسـ Lp، عامل الامتصاص للعينة (A(0)), وعامل الاهتزاز الحراري, TF استقطاب لورنـ Lp، عامل التعددية P، عامل الامتصاص للعينة (A(0)), وعامل الاهتزاز الحراري, TF

الكلمات المفتاحية: المركب ، Co_{0.6}Zn_{0.4}Fe_{2}O_{4} ، X، عامل التركيب البنوي

*طالبة ماجستير - نسب الصلب - قسم الفيزياء - كلية العلوم - جامعة تشرين - سورية.
**أستاذ - قسم الفيزياء - كلية العلوم - جامعة تشرين - سورية.
***أستاذ مساعد - قسم الفيزياء - كلية العلوم - جامعة تشرين - سورية.
Determination of the Structure Factor of CoZn-Ferrite and Barium Titanate Using XRD

Rawa.a Sleem*
Dr. Badr Alaraj**
Dr. Louai Mohammad***

(Received 2 / 7 / 2013. Accepted 24 / 9 /2013)

☐ ABSTRACT ☐

System (1-x)Co_{0.6}Zn_{0.4}Fe_{2}O_4/(x) BaTiO_3 (x = 0 , 0.25 , 0.75 , 1) were prepared by general ceramic method which consists of ferrite phase and barium titanate phase. Then, the X-ray diffraction patterns were taken for this sample. To determine the XRD- relative intensity, the following parameters should be estimated: multiplicity factor P, Lorentz-polarization factor L_p, absorption factor $A(\alpha)$ and temperature vibration factor TF. After that, the structure factor F_{hkl} was calculated.

Keywords: Co_{0.6}Zn_{0.4}Fe_{2}O_4 - BaTiO_3 composite; X-ray diffraction; the structure factor F_{hkl}; multiplicity factor P, Lorentz-polarization factor L_p.

* Postgraduate Student, at Physics Department, Faculty of Science, Tishreen University, Syria.
** Professor at Physics Department, Faculty of Science, Tishreen University, Syria.
*** Associate Professor at Physics Department, Faculty of Science, Tishreen University, Syria.
مقدمة:

كما هو معروف في علم البلورات وحيد أشباه X تسهم العوامل الأمامية في شدة الأشعة المنكوبة عن المستوي البلوري: عامل البيتية، عامل استقطاب لورنتس، عامل التحديد للمستوي البلوري، عامل الإصبعي وعامل الاهتزاز الحراري للبلورة وتثبت الجهاز K0 لأليوب X [1].

بنية السبيل: عبارة عن بنيّة معرفة من الناحية FCC مؤلفة من أيونات الأوكسجين تحتوي ضمنها على 96 موقعًا بنيّا في وحدة الخلية المكعبة. تتوزع هذه المواقع البنية على 64 موقعًا رئيسيًا يمكن مشغولًا منها فقط 8 جزيئات، و 32 موقعًا ثانويًا يكون مشغولاً فقط 16 جزيئة، أي أن 24 موقعًا مشغولًا من المواقع 96 البنية [3,5] \[l_{hkl} \]

شدة خط الانعكاس

تشتت شدة أشعة X منكوبة عن المستوى البلوري (hkl) إلى العوامل الأمامية [1,3,6]:

\[I_{hkl} = K_0 \cdot [F]^2 \cdot P \cdot L_p \cdot A\{\theta\} \cdot TF(\theta) \cdot \frac{V_{ph}}{V_{cell}} \] \[(1) \]

حيث:
- عامل التركيب البنيوي، P عامل التحديد أغ يمثل عدد المستويات البلورية التي لها نفس المسافة الفاصلة في البلورة [1,9,1].

\[L_p = \frac{4e^{2} 20}{\pi^{2} h^{2} \cos^{2} \theta} \] \[(2) \]

حيث:
- عامل استقطاب لورنتس، Lp زاوية براش (0)، واصلاء الامتصاص ويؤدي دورًا بارزاً عند الورود المثال (ممارس طويل)، عند الزوايا الصغراء، TF=عمل الحرارة وصف تأثير الحركة الحرارية على شدة الإشعة.
- وقد لوحظ تجريبية مع زيادة درجة الحرارة تتناقص شدة الإشعة، وتؤدي الاهتزازات الحرارية غير الدورية لمكونات vph الشبكة إلى تشتت غير مرن لأشعة X، ويتناوب هذا العامل عكس مع معامل الإصبعي الخطي B للعينة: vcell حجم الطور المنروس من العينة، vcell حجم وحدة الخلية.

\[TF(\theta) = \exp[-B(T)(\sin \theta / \lambda)^{2}] \]

\[B(T) = 4\pi^{2} <u>^{2} \] \[(3) \]

حيث: \[<u> \]، Debye–Waller عامل B (T)=8 \[\pi^{2} <u>^{2} \]، X طول موجة أشعة X يمثل متوسط ازاحة الذرات المتهزة في البلورة [3].

\[|F_{hkl}|^{2} = Structure factor \]

عند التركيب البنيوي

يعرف عامل التركيب كما في العلاقة التالية:

\[F = \text{حالة حرارية} \]
تحديد عامل التركيب البنوي للتركيب كوبالت زنك فرايت وتثباث الباريوم باستخدام XRD

ولحساب عامل التركيب ينبغي معرفة عامل التشتيت الذري \(f \) (عامل الشكل) [1]:

\[
\text{عامل التشتيت الذري من نواة} = f
\]

يعطي \(f \) بالصيغة الآتية:

\[
f = \sum_i f_i e^{-B \left(\frac{\sin \theta}{\lambda} \right)^2} + c
\]

بين الجدول 1 معاملات عامل التعددية للأنظمة البلورية [7].

<table>
<thead>
<tr>
<th>جدول 1: تتضمن فيم عامل التعددية (P) لمستويات البلورية حسب قانون ميلر.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cubic</td>
</tr>
<tr>
<td>P</td>
</tr>
<tr>
<td>Hexagonal</td>
</tr>
<tr>
<td>P</td>
</tr>
<tr>
<td>Tetragonal</td>
</tr>
<tr>
<td>P</td>
</tr>
<tr>
<td>Orthorhombic</td>
</tr>
<tr>
<td>P</td>
</tr>
<tr>
<td>Monoclinic</td>
</tr>
<tr>
<td>P</td>
</tr>
<tr>
<td>Triclinic</td>
</tr>
<tr>
<td>P</td>
</tr>
</tbody>
</table>

أهمية البحث وأهدافه:

إن أهم كمية يمكن استنتاجها من قياسات شدة أشعة الحيوان هي القيمة العددية لمعامل التركيب \(|F_{hkl}| \) - Structure factor، وتتطلب بين هذا العامل وشدة الأشعة المقدسة في كالآتي:

\[
|F_{hkl}| \text{، ومن مخطط حيوان} = X \text{، نأخذ النسبة بين} X \text{، خطى انعكاس بحيث يحقق الشرط التالي لقانون ميلر:} h+k+l=even
\]

ولكن بسببها لنظامي بمعروف أوضاع الذرات في الوحدة البنائية للبلورية. ومعاملات التركيب هذه هي أيضاً التي تستخدم في حساب خرائط الكثافة الإلكترونية التي يمكن منها تعين أماكن الذرات في البلورية.

طرق البحث ومواده:

حضر مركب الفرايت \(\text{Co}_{0.5+0.5}\text{Zn}_{0.5-0.5}\text{Fe}_{2}\text{O}_{4} \) باستخدام الطريقة السيراميكية، وذلك بخلط أكاسيد عالية النقاوة بالتركيب الفرايت ونسبة المولية المطلوبة، وبالطريقة نفسها تم تحضير مركب تثباث الباريوم من \(\text{Fe}_{2}\text{O}_{3} \) و\(\text{ZnO} \) و\(\text{CoO} \) من
الأخضادين : TiO$_2$ و BaO . تخلط الأكاسيد جيداً وتغذي إلى درجة عالية من التعويم . وبعد ذلك ، يضاف إليها ماء مقطر ثم توضع على خلاط مغناطيسي لمدة أربع ساعات ثم تجف وتطحن مرة ثانية . توضع في جفنة خاصة Composite ومن ثم تتسخن المساحيق بشكل أولي في الفرن عند الدرجة 800°C لمدة أربع ساعات . وتشكل أخذت نسب متوازية $25%$ من كلا الطورين ثم خلط بعضها مع بعضها الآخر وطحنت جيداً ثم وضعت في الفرن للتسخين الأولي عند الدرجة 700°C لمدة أربع ساعات . وبعد ذلك وضعت المساحيق الناتجة في الفرن عند الدرجة 1100°C لمدة أربع ساعات للتسخين النهائي ثم تركت لترتد إلى درجة حرارة الغرفة بمعدل هبوط λ 80$^\circ\text{C}$.

لاختبار تشكل الطورين أخذت أطياف الحيود للعينات المحضرية باستخدام جهاز الحيود XMD 300 X-ray diffractometer الذي يعمل بإشعاع ($\lambda = 0.1541\text{ nm}$).

النتائج والمناقشة:

1- أطياف الحيود Composite يبين الشكل 1 أطياف الحيود للعينات المحضرية . ونلاحظ في أطياف الحيود ل وجود طور الفرايت وطور تيتانات الباريوم [8].
الشكل 1: نماذج الالكتروسويدي

باستخدام قانون براغ التالى تم إيجاد المسافة بين المستويات البلورية \(d_{hkl} \) للنظام المكعبى والنظام رباعى الزوايا حيث قراران ميلر، ويعبر عن الشدة بارتفاعها.

\[2d_{hkl} \sin \theta = \lambda \]

وتم تحديد قراران ميلر الموافقة لكل قيمة ل. باستخدام بطاقات المعایير الأمريكية لاختيار المواد ASTM وفق الزاوية المقابلة لكل خط الالكتروسويدي.

ويحسب معامل التركيب النسبى كالآتي:

\[\frac{I_{hkl}}{I_{hkl}^{000}} \frac{F_{hkl}}{F_{hkl}^{000}} \frac{L_{p}}{L_{p}^{000}} \]

(6)

تم إيجاد شدة خط الالكتروسويدي والمسافة بين المستويات البلورية لطور الفرائت وطور تيتات الباريوم من نماذج الالكتروسويدي، ودُوِّنت النتائج في الجدول 1. جدول 2 يحتوي على قيم زاوية براغ، قراران ميلر، المسافة البلورية، شدة خط الالكتروسويدي، عامل الالكتروسويدي، وعامل استقطاب لورنتس لطور الفرائت وطور تيتات الباريوم النتينى.

<table>
<thead>
<tr>
<th>CoZn – ferrite phase</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(hkl)</td>
<td>(d (\text{Å}))</td>
<td>I</td>
<td>P</td>
<td>(L_{p})</td>
</tr>
<tr>
<td>20</td>
<td>200</td>
<td>2.97</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>30</td>
<td>220</td>
<td>212.5</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>42.50</td>
<td>400</td>
<td>1.48</td>
<td>27</td>
<td>12</td>
</tr>
<tr>
<td>52.5</td>
<td>422</td>
<td>1.74</td>
<td>24</td>
<td>7</td>
</tr>
<tr>
<td>BaTiO(_3) phase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.95</td>
<td>002</td>
<td>2.015</td>
<td>43</td>
<td>2</td>
</tr>
<tr>
<td>65.7</td>
<td>202</td>
<td>1.42</td>
<td>32</td>
<td>8</td>
</tr>
</tbody>
</table>

(6) وسجلت النتائج في الجدول 3. جدول 3: يحتوي على قيم الشدة النسبية ومعامل التركيب النسبى لطور الفرائت وطور تيتات الباريوم النتينى.

<table>
<thead>
<tr>
<th>CoZn – ferrite phase</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(hkl)</td>
<td>(I_{hkl} / I_{hkl}^{000})</td>
<td>(\frac{</td>
<td>F_{hkl}</td>
</tr>
<tr>
<td>220/400</td>
<td>1.5</td>
<td>0.345</td>
<td></td>
</tr>
<tr>
<td>220/440</td>
<td>0.5</td>
<td>0.096</td>
<td></td>
</tr>
<tr>
<td>400/422</td>
<td>1.4</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>BaTiO(_3) phase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002/202</td>
<td>1.34</td>
<td>2.31</td>
<td></td>
</tr>
</tbody>
</table>
و باستخدام العلاقة (7) تم تحديد نسبة طور الفراي (111) وتبتنتات الباريوم من النسبة بين خط الانكس الفراي (311) والخط الانكس (B(211)) C_F

\[
C_F = \frac{1}{I_F} \times 100
\]

حيث K-1.33 ثابت معایبرة جهاز XRD [10.11].

حذره4: يحتوي على نسبة طور الفراي بالنسبة إلى طور تبتنتات الباريوم وشدة خط الانكس (111) لكل من الفراي وتبتنتات الباريوم للعينة F 25%.

<table>
<thead>
<tr>
<th>I_B</th>
<th>I_F</th>
<th>C_F %</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>4</td>
<td>16</td>
</tr>
</tbody>
</table>

و بالتالي تكون نسبة تبتنتات الباريوم 84%.

الاستنتاجات والتوصيات:

1- يأخذ عامل التجديدية للمستويات البلاورية للفراي وتبتنتات الباريوم قيمةً بين 24 -2 ويعبر عن المستوى الذي تسهم فيه الانكسة في الموضوع نفسه أو المكان.
2- يؤثر عامل استقطاب لورنتز في إضعاف الشدة حتى بلوغ الزاوية 50° -20 أي تتسبب عكسية بين الشدة وهذا العامل يؤثر هذه الزاوية يعكس هذا السلك، فمن أجل الفراي وتبتنتات الباريوم النقيين يأخذ قيمةً بين 27.45 - 5.27 11.11 - 4.73 على الترتيب.
3- يتولد عامل البنية من تداخل الأمواج المشتقة عن نقاط وحدة الخلية ويساع هذا التداخل شدة الانكسة حسب نوعه (بناء أو هدام). في الفراي النقي يأخذ قيمةً في المجال 3.5-3.06. ووحيد تبتنتات الباريوم يأخذ القيمة 2.31.
4- وجدنا أن نسبة طور الفراي بالنسبة إلى طور تبتنتات الباريوم عند العينة F 25% هي C_F = 16 %، وبالتالي تكون نسبة تبتنتات الباريوم 84%.
5- ويمكننا متابعة هذا العمل في دراسة وتحديد العامل الذري (عامل الشكل) [12].

المراجع:
[5] Ana Maria Rangel de Figueiredo Teixeira, 2006 - Investigation of sintered CoZnFerrite synthesized by coprecipitation at different temperatures, Material Research, v.g, N0.3.
[6] HEMEDA O.M., ABD EL – ATI M. I., 2001 - Spectral studies of \(\text{Co}_{0.5}\text{Zn}_{0.4}\text{Mn}_{x}\text{Fe}_{2-x}\text{O}_4\) at different soaking times. Materials Letters, Vol. 51, p.42-47.

[8] بدر الأعرج، عبد الربى توفيق، 2010 - الدراسة الطيفية للمركب \((1-x)\text{Co}_{0.6}\text{Zn}_{0.4}\text{Fe}_{2-x}\text{O}_4/(x)\text{BaTiO}_3\)

