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O ABSTRACT 0O

In this paper, we use polynomial splines of eleventh degree with three collocation
points to develop a method for computing approximations to the solution and its
derivatives up to ninth order for general linear and nonlinear ninth-order boundary-value
problems (BVPs). The study shows that the spline method with three collocation points
when is applied to these problems is existent and unique. We prove that the proposed
method if applied to ninth-order BVPs is stable and consistent of order eleven, and it
possesses convergence rate greater than six.

Finally, some numerical experiments are presented for illustrating the theoretical
results and by comparing the results of our method with the other methods, we reveal that
the proposed method is better than others.
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1. Introduction
Higher-order boundary value problems are known to arise in the study of
astrophysics, hydrodynamic and hydro magnetic stability, fluid dynamics, astronomy,
beam and long wave theory, engineering and applied physics [1-15]. The several spline
methods have been extensively applied in numerical ordinary differential equations due to
its easy implementation and high-order accuracy [6-8,9-11].
We present in this paper, new spline collocation method of the numerical
solutions for two types of problems. The first type, general linear ninth-order BVPs of the
form:

YO+ 2.6, y? () =9(x), xe [a,b], (1.1)
subject to the folll_oowing boundary conditions:
{y(a) =0, Y'(@) =, y'() = a,, YO (@) =, Y (@) =
y(b) =4, Y(0) =5, y'(0) = 5,y (b) = 5,

(1.1a)
wheree,, g, (1=0,...,3) and «, are finite real constants and g, (x) (i =0,...,8) are all

continuous functions on [a, b].
The second type, general nonlinear ninth-order initial value problems of the form:

yO)=f(xy Y, y..y?) , xe [ab], (1.2)
with the following initial conditions:
y?@=¢,,i=01..8. (1.2a)

Several spline collocation methods for solving high-order BVPs are presented by
(Kasi et al, 6), (Lamnii et al ,7) and (Mahmoud, 9-11). Moreover, optimal homotopy
asymptotic and homotopy perturbation methods for solving these problems are considered
in [1,5, 12-14]. Hassan et al [3] and Hesaaraki and Jalilian [4] have been applied
variational iteration methods of numerical solution for the proposed problem.

Hassan and Ertlrk [2, 2009] is presented a numerical comparison between the
differential transform method and Adomian decomposition method , as well, modified
decomposition method is considered by Wazwaz in [15] for solving boundary value
problems from the forms (1.2)-(1.2a).

Importance of Research and its Aim
It is well known that the analytical solutions of those higher-order BVPs are
either very difficult or not existent. So, the numerical solutions of them are very important.
This work aims to present spline method with three collocation points for finding
the numerical solutions for general linear ninth-order BVP (1.1)-(1.1a), and general
nonlinear ninth-order I\VPs (1.2)-(1.2a).
Methodology
The paper is organized as follows. In section 2, the ninth-order BVP (1.1)-
(1.1a) is transformed into five initial value problems (I\VVPs). Polynomial splines with three
collocation points are directly applied into ninth-order IVVPs and then the spline numerical
solution and its derivatives up to ninth order are computed. Moreover, polynomial splines
are directly applied into nonlinear ninth-order IVPs for finding its spline numerical
solution. Section 3, the existence and uniqueness of spline solution of the ninth-order BVP
are proved. The convergence analysis and error estimation of the spline method are
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discussed. Finally, in Section 5 and 6, we conclude with numerical results, discussion and
conclusion.
2- Spline Collocation Method
In this section, the ninth-order BVP is transformed into five IVPs. After that,
spline functions are formulated to be applied directly into the five IVPs for finding the
spline solution and its derivatives up to ninth-order of them.

2.1 Solution Scheme of ninth-order BVP
Consider the ninth-order BVP (1.1):

Y200 =-226,09 ¥ (0+ (0, xe [a,b], (2.
subject to the folll_oowing boundary conditions:
{y(a)=ao, y@=a,y'@=a,y?@)=a, y?@=a,
y(0) = £, y'(0) = £,y (0) = 5,y (b) = 5,
Let y(x) be the unique solution to the BVP (2.1)-(2.1a), then this solution is

associated by a linear combination consists of five special IVPs. To find it, we assume that
U(x) is the unique solution to the following ninth-order I\VP:

: (2.1a)

8
UPx)==>aqxU®x)+g(x), a<x<b, (2.2)
i=0
with the following initial conditions:
U®@)=eq,, (k=01..4), U¥@) =0, (k=5,..8), (2.2a)

In addition, suppose that U;(x), U2(x) Us(x) and U4(X) are the unique solutions to the
following four homogeneous ninth-order I\VVPs, respectively, the first equation:

8
U® =->"q,)U"(x), a<x<b, (2.3)
i=0
with the following initial conditions:
u®@=0, (k=0...,4), UP@=1,U%@)=0 (k=6,7.3), (2.33)
The second equation
8 .
UP =->"q,0UP(x), a<x<b (2.4)
i=0
with the following initial conditions:
U@=0, (k=0,.5), UP@=1,U{@)=0 (k=78), (2.4a)
The third equation
8 .
UP =->q,(xU(x), a<x<b, (2.5)
i=0
with the following initial conditions:
u@=0, (k=0...,6), U@ =1 UP(a)=0, (2.5a)
The final fourth equation:
8 .
UP =->gUP(x), a<x<b (2.6)
i=0

with only the following initial conditions:
u®@=0, (k=0.,..,7), UP(a) =1 (2.6a)
Then, for four real constants c,,c,,c,, and c, there exists the linear combination:
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Y0 =U()+> U, @7)

which it is a solution to the ninth-order BVP (2.1)-(2.1a), as seen by the following
computations:

4
y2 =09+ c U=
k=1

=— Zqi U D (x) + g(x) + ch [—Z a, (U ()]
:_Zqi ()[U P (%) + ZCka)(X)] +9(x) =— Zqi x) YO () +g(x),

where yOx)=ux)+> Ul i=01,..8.
k=1

Now, it will be illustrated that the formulated solution y(x) by equation (2.7) holds on
the boundary values (2.1a), thus from conditions (2.1a) it yields out:

y@(a)=U?(a) +§4:ck U®P(a)=a, +§4:ck ©)=a,, (i=0,..,4)

The unknown constants c,,c,,c,, and ¢, will be determined from the remainder of
the end conditions by solving the system of equations:

y© () =U"(b) + ZAZCk Ul =4, (i=0123), (2.8)

Now, since the proposed BVP (2.1)-(2.1a) has been reduced into five IVPs (2.2)-
(2.6), spline techniques with three collocation points are applied for solving the ninth-order
IVPs.
2.2 Formulation of the Spline Approximations.
Denote by x, =a+ih,i=01...,N, the grid points of the uniform partition of
[a,b] into subintervals I, =[x, x.,], k=01,...,N-1, and h=(b—a)/N is the constant

stepsize. Let S(x) be the spline approximation of the function y(x) that can be represented
on each Iy by:

8 (X —X i : 1 (y_x i
sup;%séh;%cm Xe[x,% ], k=0,..,N-1, (2.9

where  S®(@)=S{" (i=0,..8).
The proposed method uses three collocation points:
Xz, =% +h 25, (4=1,2,3), (2.10)
with collocation parameters are given as
O<z,<2z,<2,=1
To apply the spline approximation (2.9) and its derivatives up to ninth-order

with respect to x, into ninth-order 1VPs (2.2)-(2.6), to be satisfied with three collocation
points (2.10), in each subinterval I, =[x,, X,.,;], k=0(1)N-1, then we have, respectively:

8 i -
SL(Jg) (Xk+ZJ- ) = _Z g (Xk+Zj )SL(JI) (Xk+Zj ) + g(Xk+ZJ- ) v )= 1’213’ k= O(l)N -1,

i=0
(2.11)
with the following initial conditions:
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s$(@)=a; (i=0,...4), $(@)=0 (i =5...8), (2.11a)
8 _ )
85 (%ez,) = =20 (Xuz,)SG (Kiz)) + J=1UD3, k=0DN -1, (2.12)
i=0
with the following initial conditions:
S8 (@) =0 (i=0,..4), S§’(a)=1, S{)(@) =0 (i=6,79), (2.12a)

8 i -
i=0

(2.13)
with the following initial conditions:
$$(@=0(=0,..5), SP(@=15§@=0 (i=78), (2.13a)
8 i -
i=0
(2.14)
with the following initial conditions:
55'3’ (a)=0 (i =0.,..,6), s}]; (a) =1, sff; (a)=0, (2.14a)
Finally, applying to five I\VP:
8 1 -
S (%uz,) = =26 (%2, )5S, (Xz)) + =103, k=0(ON -1, (2.15)
i=0
with only the following initial conditions:
S0 (@=0(i=0,.7), Sf(a)=1. (2.15a)

Now, by substituting spline solutions to the system of linear equations (2.8), the

coefficients c,,c,,c,, and c,that associate with boundary conditions , will be known as
follow:

by:

6] [Su®) Su) Su.0) Su. 0T T4 -5, 0)
e,| |, Si,0) Si® S, | p-sib)

C| | S5, (B S5, Sy Si®)| | B-S;b)
c,] [0 sPb) sfb) sE®)] |4 -sP )

Thus, the spline solutions S™(x),i =0,...,9 of the BVP (2.1)-(2.1a), will be known

. . 4 .
SP(x)=S"(x,)+ chSSJ? (x), i=01..9. (2.16)
j=1
Moreover, applying collocation points x,,, =x +h z;, (=1,2,3) to (2.9), we obtain
J
8 (hz,) .. & (hz))
S(Xz, ) = Z% s +Z( _|J) Ciisr J=1..3, k=0,.,N-1. (2.17)
-0 I -9 I '
where z;,=]13, Xisz, €lX, X1, (51,2,3).

The first three coefficients C,,,C, ,,C, ;are computed from the linear systems

(2.11)-(2.15) by using the initial value conditions if k=0, or from the previous steps if k>1.
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2.3 Spline Solution of nonlinear ninth-order VP
The numerical solutions of nonlinear ninth-order 1VPs by proposed spline
method are more easy than BVPs, so the spline approximation (2.9) and its derivatives

S®(x),i=0,...,.8, will be applied directly without reducing the problem to system of first-
order differential equations. Now, spline collocation method is applied into (1.2)-(1.2a), to
be satisfied with collocation points (2.10), in each subinterval 1, =[x,, X, ,], as follow:
S‘g)(xk+Zj )= f[xk+Zj ,S(xk+Zj ),S'(xk+Zj )0y S® (xk+Zj ), Xrz, € I, k=0(1)N-1
with the following initial conditions:
sP(@)=a;, 1=01,..8.
2.4 Stability of Spline Collocation Method
Consider the following ninth-order IVP:
Y@ () = F (X, y(x),... y¥ (x)), xe[a,b]
y@(@)=a,, d=0(1)8.
Suppose that F :[a, b]xC[a, b]x---xC’[a, b] > R is an enough smooth function
satisfying the following Lipschitz condition in respect to the last argument:
8
| F O Yor Ya) = FOG Toren Vo) L SLD Y = i bV (% Yoo V)i (X, Yororns Vi) €[, B]x R®
i=0
where the constant L is called a Lipschitz constant for F.
These conditions ensure the existence of a unique solution y(x) of problem (2.18).

By applying the Spline approximations (2.9) and its derivatives into the problem
(2.18), to be satisfied with three collocation points (2.10), we obtain the linear system:

(2.18)

hz)* . _ ® -
Ck,l+(hzj)ck,2+ Ck,3_ l:(Xk+Zj’ S(Xk+2j)""!S (Xk+Zj))lJ_11"l3!
k=0,.,N-1
(2.19)
S@@)=a,, d=001)8. (2.20)
We rewrite (2.19) in the matrices form:
where
B h2z2] _ _ — -
1 hz LA C. Fiz,
h2zz2 | = A
A=|1 hz, e | Ce=|Ca | F= Fk+22 -
2
1 h B Cs | Fes

I:kJij = I:(XkJij ' S(Xk+Zj ) 1oy S(S) (Xk+Zj )) ' j:11213-

Definition 1 [9]: The spline collocation method (2.21) is called stable if eigenvalues
of the matrix A satisfy

|4 <L j=1..,m
where A is the matrix in the linear system .
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Corollary 1. The spline collocation method applied to (2.18) is stable if eigenvalues
of the matrix A satisfy

L]y |1 1] a5 I<1, (2.22)
for z; = j/3 (j=1,2,3), where A is the matrix in relation (2.21) .

Proof. The spline method applied to ninth-order IVP is stable if conditions
| ;<1 j=1,2,3 are satisfied. To do this, we find that the matrix A has the three different

eigenvalues 4y, =0.545904, 11, = 0.160679, 1, = 0.0156385, for z,=1/3,
z,=2/3, 2, =1.

3 Convergence Analysis and Error Estimation
Here, we find to introduce two following definitions.
Definition 2 [9]: A spline collocation method is said to be consistent of order p if

max || 7. |=O(h"), where 7, is local discretization error at X .
1<k<N
Definition 3 [9]: The spline collocation method is said to be convergence if

%Lry M%l Y(%) =S, | =0, where y(Xc) is the exact solution and Sy is the spline

solution of spline collocation method at ;.

We assume that y(x) e C*’[a, b], the unique solution of the linear ninth-order
BVP and S(x) be a spline approximation solution to y(x), also 7, is a 3-dimensional
column vector. Here, the vector 7, is the local truncation error. Applying the Spline
solution S(x) on three collocation points xk+zj =X +2z;h, (j=1,2,3), putting

y(xk+zj) =y(x, +hz;), S =SM(x)and y{™ =y™(x), (m=0,...,8), k=0,...,N-1, for

z; = j/3 (j=1,2,3), we obtain the local truncation error formula:

7, =MC, +¥,, (3.1)
where
.8 i . ] B T
S @ oy 1+ zh) (zhy (zhy° (zhy
— i! al 10! 1
& _ = @h z,h)*  (z,h)o (z,h)
P S A 50 yx ez | M= g SRR 0
IEO hi ) he hto htt
}}rsy—yuk+m or 107 iK1
Li=0 °° B - -
Ck,l
5k = Ck,z
_Ck'?’_

On the other hand, from the system (2.21), we get
C.,=A'F (3.2)
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-1 . . ~
where A~ is the matrix (2.20), and F :[y‘g’(xk+zl) ,y(g)(xk+22) YO T

Using Taylor’s expansions for the functions y™(x),m=0,..,9 about X, in the

relation (3.2) and substituting into (3.1), we get the local truncation error at the kth step as
follows:

367 hi2,,02) ]
T Y (%)

= _ 1 U _ 2 12,,(12) _
=M(ATF)+¥ = g Y (X | k01N (33)

29 12 (12)
Y (X)

where
v =3 () )0 )+ O(h), X <6, %]
Note from the relation (3.3) that the local truncation error of the presented Spline

collocation method is || 7, ||Oo=i y®?(x,)h* = O(h*®) and thus the global error after
b—a
“h

12*11

N steps will be max | 7 lI= N.O(h*?*) = ——.0(h**) =O(h*"), we deduce, according to
1<k<N

Definition 2, that the method is thus consistent and is of order at least eleven for z; = j/3
(j=1,2,3).

Consequently, we have obtained the following: let y e C''[a, b] be Lipschitz
continuous, then the spline approximation S(x) converges to the solution y(x) of the ninth-
order BVP as h—0 for z; = j/3 (j=1,2,3) and

lim S™@E)=y™E), m=0,..8 e=ab. (3.4)

Furthermore, the method is convergent according to Definition 3, for the reason that
Lim max || 7 ||..= leO(h )=0=>» LimMax|y(x)-S,|=

h—o  0<k<N h—0 1<k<N

4. Numerical Results and Discussions
The experiments below are designed to test the efficiency of the spline method
when applied with three collocation points to linear and nonlinear ninth-order BVPs with
uniform grids. These problems have exact solutions, thus we compute their actual errors. In

calculations, the notations ™ =max || y® (x)—S® (x)|| are used to denote maximum

absolute errors, where , k=0,1,..,8 indicate orders of derivatives. Numerical results of
examples are obtained from computer programs designed by TPW 1.5 in double precision,
and figures are plotted by Mathematica 9.

Problem 1. Consider the ninth-order linear BVP (cf. [1, 5, 14,15]):
yOX) -y(x)=-9 exp(x), 0<x <1, (4.2)

with boundary conditions:
{y(O) =1, y'(0)=0, y"(0) = -1, y?(0) =2,y (0) = 3

(4.2a)
yD =0, yQ)=—e,y"(1) =-2e,y? (1) =3,
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Its exact solution is y(x) = (1—x)exp(x) . In Tablel, the maximum absolute errors in

the spline solution and its derivatives up to ninth order are calculated by proposed spline
method for N=10. Table 2 and Table 3 illustrate comparisons between the absolute errors
obtained by presented spline method and other methods in [1, 5, 14,15]. The spline

solutions S(x) , S®(x), S®(x) and the exact solutions as well as absolute errors in

S®(x) are illustrated in Figs.1-4, respectively.

Table 1: Maximum absolute errors of Problem 1, for h=0.1.

5(0) 5(1) 5(2) 5(3) 5(4)
1.4E-15 6.2E-15 5.4E-14 7.6E-13 4.0E-12
5(5) 5(6) 5(7) 5(8) 5(9)
6.7E-11 7.7E-10 5.3E-9 2.1E-8 1.4E-15

Table 2: Comparison of maximum absolute errors of the present method
with other methods, for Problemd, in y™ , m=0.1,....9.

(m) - . Presented Spline
i Least square method [7] | Variational itera. Method [3] Method
Y, 0.1231 E-19 9.08 E-12 3.0358 E-18
y 0.5848E-18 | = - 5. 3535 E-17
& 0.4180E-16 9.02E-11 1.3661 E-17
y® 0.3599E-14 | - 1.0716 E-15
) 0.5722E-12 2.57 E-09 5. 3535 E-14
y® 0.2058E-09 | = - 2.7252 E-13
© 0.2765E-07 1.71 E-06 35138 E-12
y? 0.1160E-05 | - 4.1875 E-11
® 0.1670E-04 1.83 E-04 4.9239 E-09
y© 0.6209E-01 | - 4.2268 E-18
Table 3: The absolute errors of Problem 1.
H Homotopy | Homotopy Modified Presented
omotopy " ; - .
Xi Method[5] Perturbation | Asymptotic | Decomposition | Spline method
Method[14] | Method[1] Method [15] h=1/10
01 | 36E 09 | 20E-10 | 1.03E-16 2.0E-10 6.2342E-18
02 | 34E 09 | 20E-10 | 1.33E-16 2.0E-10 8.8146E-17
03 | 46E_09 | 20E-10 | 2.12E-16 2.0E-10 3.8836E-16
04 | 14E_09 | 2.0E-10 | 1.30E-14 2.0E-10 9.0222E-16
0.5 45E - 09 2.0E-10 2.44E - 13 2.0E-10 1.3451E-15
06 | 6.0E_06 | 6.0E-10 | 2.64E-12 6.0E-10 1.3618E-15
0.7 3.1E-09 1.0E-09 1.97E-11 1.0E-09 8.9154E-16
08 | 24E_-09 | 20E-09 | L.I3E-10 2.0E-09 2.9626E-16
09 | 45E 09 | 34E-09 | 5.26E—10 3.4E-09 1.2468E-17
1.0 | 0.000000 | 0.000000 | 2.09E-09 |  0.000000 5.3595E-19
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10 > 204 W
—Exact — Exact
0.9 30
08 - —O—Approx. ol ~O— Approx,
p 50 -
06 1
6.0 -
05 4 -
04 4 0
0.3 - -
0.2 1 A
0.1 4 . -10.0
0.0 , ' y . 110 . : : . ;
0 0.2 04 06 08 1 0 02 04 06 08 1
Fig.1: The spline solution S(x) and the exact Fig.2: The spline solution S¥ (x) and the exact
solution y(x), for Problem1, h=1/25. solution y“(x), for Problem 1, for N=25.
5| LR 2l A ke )
6.0 v — Exact 5.0E-09 1 IF= ity
0 —O—Approx.
9 40E49 |
-10.0 -
120 A 3.0E-09 1 =0-bs Errof
14.0 -
206409 4
-16.0 A
-18.0 A 1.0E09 1
=200 4 p
220 00E+0 O——r—-r—r—v—TvT—tT—T .
' ' ' ) ! 0 01 02 03 04 05 06 07 08 08
0 02 04 06 08 1 ¢

Fig.3: The spline solution S® (x) and the exact Fig.4: The absolute error in spline solution
solution y®(x), for Problem 1, for N=25. S®(x) , for N=25.

Problem 2. We consider the following nonlinear BVP (cf. [1]):
{ y©@ =exp(-x)y?(x), 0<x<1,

y(0)=y'(0)=y"(0) =---= y®(0) =1.
The exact solution is y(x) = exp(x) . Table 4 appears comparisons of the numerical

solution and absolute errors by presented spline method with other by the optimal
homotopy asymptotic method [1]. In Table5, the maximum absolute errors in the spline
solution and its derivatives up to ninth order are calculated by proposed spline method for
N=10.
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Table 4: The numerical solution and absolute errors of nonlinear problem 2, for h=10.
Homotopy method [1, 2012] Presented spline methods

% Exact solution Homo. Sol. Abs Error Spline Sol. Abs Error
0.1 | 1.1051709180756 | 1.105170915 | 1.39E—16 | 1.1051709180756 | 1.084E-19
0.2 | 1.2214027581602 | 1.221402732 | 5.32E—16 | 1.2214027581602 | 5.141E-16
0.3 | 1.3498588075760 | 1.349858729 | 1.48E—15 | 1.3498588075760 | 4.790E-15
0.4 | 1.4918246976413 | 1.491824562 | 3.36E —15 | 1.4918246976413 | 1.995E-14
0.5 | 1.6487212707001 | 1.648721109 | 2.28E—14 | 1.6487212707001 | 5.783E-14
0.6 | 1.8221188003905 | 1.822118662 | 2.21E—13 | 1.8221188003904 | 1.362E-13
0.7 | 2.0137527074705 | 2.013752625 | 1.64E—12 | 2.0137527074702 | 2.800E-13
0.8 | 2.2255409284925 | 2.225540900 | 9.36E —12 | 2.2255409284920 | 5.240E-13
0.9 | 2.4596031111569 | 2.459603108 | 4.36E—11 | 2.4596031111561 | 9.149E-13
1.0 | 2.7182818284590 | 2.718281828 | 1.73E—10 | 2.7182818284576 | 1.516E-12

Table 5: Maximum abs errors of Problem 2, for h=0.1.

5(0) 5(1) 5(2) 5(3) 5(4)
1.4E-12 6.6E-12 2.3E-11 6.6E-11 3.2E-11
5(5) 5(6) 5(7) 5(8) 5(9)
1.6E-10 8.8E-10 2.8E-9 5.3E-9 2.8E-12

Problem 3. Consider the following general ninth-order BVP:
8 .
YO )+ yP () =(x—4)cos(x) + (x+5)sin(x),
i=0
y(-7) =0, y'(-7) = 7,y"(-7) =2,y (-7) = -7,y ¥ (-7) = 4
y(x)=0, y(x)=-r y'(r)=-2,y?(x)=7r.

The exact solution is y(x) =x sin(x). In Table6, the absolute errors in the spline
solution and its derivatives up to ninth order are calculated by proposed spline method. The
spline solutions S(x) ,5™(x), S®(x) as well as the solutions y(x), ,y"'(x), y®(x) are
illustrated in Figs.5-14, respectively.

20 Y oIS e A el
Exact 6.0E-10 1

18 4

1.6 ~O=Approx 5.0E-10 1

14 4
; 4.0E-10 1

1.2 4

10 4 30E-10 4

08 A

el 20E-10

04 4 1.0E-10

0.2 1 ¥

0.0 0.0E+00
-35-3-25-2-15-1-050 05 1 15 2 25 3 35 93 -

Fig.5: The spline solution S(x) and the exact Fig.6: The absolute error in spline solution S(x)

solution y(x), for Problem4, h=Pi/15. , for N=30.
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35 Y. . 7S] o b e
—Exact 7.0E-10 <
25 1 -0~ Approx. 6.0E-10 4
15 1 5.0E-10 1
0.5 4.0E-10 1
05 A 3.0E-10 1
15 4 2.0E-10 1
25 - 1.0E-10 -
35X 0.06400 4 L L L L
-35-29-23-17-1.1-050.1 0.7 1.3 1.9 25 3.1 A35-3-25-245-105005 1152253 3%
Fig.7: The spline solution S'(x) and the exact Fig.8: The absolute error in spline solution
solution y'(x), for Problem 3, h=Pi/15. S'(x) , for N=30.
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Fig.9: The spline solution S"(x) and the exact Fig.10: The absolute error in spline solution
solution y'(x), for Problem 3, h=Pi/15. S"(x) , for N=30.
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Fig.11: The spline solution S™(x) and the exact
solution y™(x), for Problem 3, h=Pi/15.

Fig.12: The absolute error in spline solution
S™(x) , for N=30.
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Fig.13: The spline solution S (x) and the exact
solution y“(x), for Problem 3, h=Pi/15.

Fig.14: The absolute error in spline solution
S9(x) , for N=30.

Table 6: The absolute errors of Problem 3, by the Presented Spline Method, for N=32.

X; S5© Ssv 5@ o5® SW
- %T 1.8201E-14 8.4791E-14 1.905E-13 5.617E-12 4.804E-11
- % 7.939E-14 3.674E-13 9.968E-13 1.005E-13 3.398E-11
- % 1.933E-13 1.861E-13 1.985E-12 1.091E-12 6.782E-11
0 1.741E-13 7.977E-13 7.416E-13 1.9891E-12 3.917E-11
% 1.969E-13 5.974E-13 8.474E-13 7.852E-12 3.958E-11
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% 5.168E-14 6.596E-13 9.931E-14 5.458E-12 4.261E-11
% 3.894E-14 9.998E-14 4.735E-13 2.222E-12 5.008E-11
% 2.895E-15 5.221E-15 5.223E-15 6.2881E-15 5.572E-11
X; o® 5® 50 5® 5®
- %r 7.743E-11 8.769E-11 8.829E-11 2.833E-10 5.836E-11
— % 9.559E-11 8.700E-11 8.914E-11 1.176E-10 5.964E-11
- % 8.262E-11 3.669E-11 9.507E-11 6.677E-11 6.663E-12
0 7.393E-11 5.873E-11 9.895E-11 1.023E-10 4.542E-11
% 4.377E-11 6.783E-11 7.201E-11 7.869E-11 6.522E-11
% 3.959E-11 7.878E-11 8.789E-11 8.794E-11 7.794E-11
%T 3.295E-11 8.586E-11 8.975E-11 1.011E-10 8.647E-11
% 8.348E-11 8.311E-11 8.862E-11 4.220E-10 9.992E-11

Rate of Convergence: Here, the order of convergence is computed when the Spline
collocation method applied to following nonlinear test problem:

y® :g(x+ y+1)°,  0<x<1,

y(0) =0, y’(0) = -0.5, y"(0) = 0.5, y"(0) = 0.75, y* (0) = 1.5,
y®(0)=15/4,y® (0) = 45/4,y"(0) =315/8, y® (0) =318/ 2.

The exact solution is y(x) = _2 x—1.
(2—x)

The nodal difference error eli“ , is defined by:
g =S} =S2V |, k=1,...,N
where S, is the spline solution at x, by the present spline method. The
experimental nodal rate of convergence is given by Rate = Log, (&, /£2)).

Table 7 shows spline solutions of test problem in the interval [0,1], for N=10,
20, 40 by presented spline method. The order of convergence for the proposed spline
method is computed in Table 8.

Table 7: The local errors for test problem by presented spline method for N=10
S, Sa Sic
-0.047368421052632 -0.047368421052632 -0.047368421052632

-0.088888888888891 -0.088888888888889 -0.088888888888889
-0.123529411764720 -0.123529411764706 -0.123529411764706

WIN || X
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4 -0.150000000000062 -0.150000000000001 -0.150000000000000
5 -0.166666666666884 -0.166666666666671 -0.166666666666667
6 -0.171428571429240 -0.171428571428586 -0.171428571428573
7 -0.161538461540392 -0.161538461538509 -0.161538461538468
8 -0.133333333338732 -0.133333333333486 -0.133333333333356
9 -0.081818181833051 -0.081818181818661 -0.081818181818258
10 -0.000000000040644 -0.000000000001459 -0.000000000000244
Table 8: The rate of convergence for presented spline method , with N=10.
k g =S} =S2| | &5 =SAY —S;' | | Rate of Convergence
1 1.04083408 E-16 1.04083408 E-18 6.64386
2 1.99840144 E-15 2.35722573 E-17 6.40561
3 1.40026878 E-14 1.52655665 E-16 6.51928
4 6.10067552 E-14 | 4.99600366 E-16 6.93205
5 2.13024042 E-13 1.99840144 E-15 6.73603
6 6.54004628 E-13 6.49480469 E-15 6.65387
7 1.88299376 E-12 2.05113703 E-14 6.52046
8 5.24602583 E-12 6.4989680 E-14 6.33487
9 1.43900030 E-11 2.01498543 E-13 6.15815
10 3.91855476 E-11 6.07575463 E-13 6.01127

Notice: the results in the Table 8 show that the rate of convergence for presented
spline method bigger than six.

5. Conclusion

Collocation spline method is successfully applied with three collocation points
for the numerical solution of linear and nonlinear ninth-order boundary value problems.
The presented spline method is experienced on three test problems. Comparisons of the
results obtained by the present spline method with obtained by Homotopy Asymptotic
Method[1], Variational iteration Method [3], Homotopy Method[5], Least square method
[7], Homotopy Perturbation Method[14] and Modified Decomposition Method [15]
appear that the present method is very effective and is better than other methods

Reference

1. ALI J., S. ISLAM, H. KHAN, and Syed Inayat Ali Shah, The Optimal homotopy
asymptotic method for the solution of higher-order boundary value problems in finite
domains, Abstract and Applied Analysis, VVol. 2012, Article 1D 401217, 1-14(2012).

2. Hassan H. Abdel-Halim, Vedat Suat Ertiirk, Solutions of Different Types of the
linear and Non-linear Higher-Order Boundary Value Problems by Differential
Transformation Method, Eur. J. Pure Appl. Math, Vol.2,No 3 (2009), 426-447.

3. Hassan H. Abdel-Halim, Mohamed 1. A. Othman and A. M. S. Mahdy,
Variational Iteration Method for Solving Twelve Order Boundary Value Problems, Int.
Journal of Math. Analysis, Vol. 3, 2009, no. 15, 719 — 730.

4. Hesaaraki M., Y. Jalilian, A numerical method for solving nth-order boundary-
value problems, Applied Mathematics and Computation 196 (2008)889-897.

238



Tishreen University Journal. Bas. Sciences Series 2015 (4) 2221l (37) alall Fuld) aslall @ (0 Aaals Aaa

5. Jafar Saberi-Nadjafi And Shirin Zahmatkesh, Homotopy Perturbation Method
(HPM) For Solving Higher Order Boundary Value Problems (BVP), Applied
Mathematical and Computational Sciences, Vol. 1, no. 2, 2010, 199-224.

6. KASI VISWANADHAM K.N.S. and Y. SHOWRI RAJU, Quintic B-spline
Collocation Method for Eighth Order Boundary Value Problems, Advances in
Computational Mathematics and its Applications, VVol. 1, No. 1, 2012.

7. Lamnii A., H. Mraoui, D. Sbibih, A. Tijini, A. Zidna, Spline solution of some
linear boundary value problems, Applied Mathematics E-Notes, 8(2008), 171-178.

8. Loghmani G.B. , Application of least square method to arbitrary-order problems
with separated boundary conditions, Journal of Computational and Applied Mathematics
222 (2008) 500-510.

9. Mahmoud S. M., The Numerical Solution of Linear Fifth-Order Boundary-Value
Problems by Using Spline functions, Tishreen University Journal for Studies and Scientific
Research-Basic Science Series Vol. (35) No (1) 2013.

10. Mahmoud, S. M., Collocation Spline Method for Solving Linear And Nonlinear
Sixth-Order Boundary-Value Problems, Tishreen University Journal for Studies and
Scientific Research-Basic Science Series Vol. (-) No (-) 2013.

11. Mahmoud, S. M., Three Point Spline Collocation Method for Solving General
Linear and Nonlinear Eighth-Order Boundary-Value Problems, Tishreen University
Journal for Studies and Scientific Research-Basic Science Series Vol. () No () 2014.

12. Ravi Kanth A.S.V. and K. Aruna, He’s Homotopy-Perturbation Method for
Solving Higher-Order Boundary Value Problems, Chaos, Solitons and Fractals 41 (2009)
1905-1909.

13. Saberi-Nadjafi J. and SH. Zahmatkesh, Homotopy perturbation method (hpm)
for solving higher-order boundary value problems, Applied Mathematical and
Computational Sciences, Vol. 1, N. 2, pp. 199-224, (2010).

14. Syed Tauseef Mohyud-Din And Ahmet Yildirim, Solution Of Tenth And Ninth-
Order Boundary Value Problems By Homotopy Perturbation Method, Applications and
Applied Mathematics, VVol.5, No.1, 11-25, 2010.

15. Wazwaz, A.-M, Approximate problem of higher order by the modified
decomposition method, Computers and Mathematics with Applications 40 (2000) 679—
691.

239



