2013 (1) مجلة جامعة تشرين للبحوث والدراسات العلمية – سلسلة العلوم الأساسية المجلد (35) العدد (1) Tishreen University Journal for Research and Scientific Studies - Basic Sciences Series Vol. (35) No. (1) 2013

الدكتور محمد حلبي^{*} الدكتور بدر الأعرج^{**}

(تاريخ الإيداع 19 / 9 / 2012. قُبِل للنشر في 25 / 2 /2013)

🗆 ملخّص 🗆

حُضِّر مسحوق الفرايت $Sb_x Fe_2O_4$ ، حيث (X= 0.5) بالطريقة السيراميكية التقليدية ثنائية التلبيد $Cu_{1-x}Sb_x Fe_2O_4$ ، ومعامل (CCDS). وحسبنا ثابت قوة الاهتزاز K للمواقع الرباعية والثمانية في شبكة الفرايت، و ثابت المرونة C11، ومعامل الانضغاط B. كما تم حساب سرعة الموجة المرنة الطولية والقصية وفق اتجاه أحرف البلورة المكعبية للعينة. بعد ذلك، حددنا تردد عتبة الانتقالات الالكترونية من طيف IR. علاوة على ذلك، تم حساب الحركية الجرية في المواقع الرباعية والثمانية في شبكة الفرايت، و ثابت المرونة C11 ألانضغاط B. كما تم حساب سرعة الموجة المرنة الطولية والقصية وفق اتجاه أحرف البلورة المكعبية للعينة. بعد ذلك، حددنا تردد عتبة الانتقالات الالكترونية من طيف IR. علاوة على ذلك، تم حساب الحركية الجرية في المواقع الرباعية والثمانية، وتغيّر عزم ثنائي القطب المغناطيس للرابطة - 0 - 2 الله

تم رسم العلاقة بين المساحة تحت القمم الماصة للحرارة (الانتالبية) في مخطط التحليل لحراري التفاضلي والوزني TG/DTA مع تغيّر الوزن %TG، وكذلك السعة الحرارية للعينة تحت ضغط ثابت Cp مع درجة حرارة معالجتها. ولوحظ أن لهذه السعة الحرارية قيمة حدية عند درجة الحرارة ⁰C .

الكلمات المفتاحية: فرايت- طيف IR- منحني التحليل الحراري التفاضلي والوزني TG/DTA- المعامل الحجمي-الطريقة السيراميكية التقليدية ثنائية التلبيد (CCDS).

^{*} مدرس – قسم الفيزياء – كلية العلوم – جامعة تشرين – اللاذقية– سورية

^{**} أستاذ – قسم الفيزياء – كلية العلوم – جامعة تشرين – اللاذقية – سورية

2013 (1) مجلة جامعة تشرين للبحوث والدراسات العلمية – سلسلة العلوم الأساسية المجلد (35) العدد (1) Tishreen University Journal for Research and Scientific Studies - Basic Sciences Series Vol. (35) No. (1) 2013

Study of certain mechanical and thermal properties of *Cu*_{1-x}*Sb*_x*Fe*₂*O*₄ ferrite by means of IR and TG/DTA

Dr. Mohamad Halabi ^{*} Dr. Badr Al-Araj ^{**}

(Received 19 / 9 / 2012. Accepted 25 / 2 /2013)

\Box ABSTRACT \Box

 $Cu_{1-x}Sb_xFe_2O_4$ ferrite (x=0.5) was prepared by a well-known conventional ceramic double sintering method (CCDS). Force constant K was calculated for tetrahedral and octahedral sites. The elastic constant C₁₁, bulk modulus B, longitudinal and shear wave velocities were calculated. Threshold frequency for electronic transition was determined using IR spectra. In addition, the drift mobility for tetrahedral and octahedral sites, as well as magnetic dipole moment changes for M^{2+} - O^{2-} bond were determined. The area beneath endothermic peaks was correlated to the weight change TG%. On the other hand, the heat capacity under constant pressure CP was correlated to sample treatment temperature. It has been noticed that the CP has a critical value at 175 ${}^{0}C$.

Keywords: ferrite; IR spectra; thermal gravitimetric and differential thermal analysis (TG/DTA) curves; bulk modulus; conventional ceramic double sintering method (CCDS).

^{*}Assistant Professor Department of Physics – Faculty of science – Tishreen University -Lattakia-Syria

^{***}Professor , Department of Physics – Faculty of science – Tishreen University-Lattakia - Syria

مقدمة:

الفرايت عبارة عن خليط من الأكاسيد المعدنية مع أوكسيد الحديد ثلاثي التكافؤ كمكوّن أساسي له، وصيغته العامة: ^{MOFe₂O₃ حيث يمثل MO أوكسيد معدن ثنائي التكافؤ.}

وتلعب عملية تحضير الفرايت أهمية كبيرة بالخواص الميكانيكية والحرارية من خلال البنية البلورية الناتجة [1]. ففي البنية المكعبية للفرايت تتجمع الذرات في بنية تدعى السبينل spinnel ، وفيها ثماني مواقع رباعية Tetrahedral ف - A ، وستة عشر موقعا ثمانيا B – Octahedral . تحتل ايونات المعدن ثنائي التكافؤ المواقع الرباعية، ويكون كل موقع رباعي محاطاً بأربع أيونات أوكسجين بينما تحتل أيونات المعدن ثلاثي التكافؤ المواقع الثمانية، ويكون كل موقع

ويحتوي الجدول (1) على أنصاف أقطار كاتيونات cations مكونات الفرايت [2].

جنون (1) . يصوي على الصالك المسيولية لمتولك المريك.							
Cations	Cu^+	Cu ²⁺	Sb ³⁺	Fe ²⁺	Fe ³⁺	O ²⁻	
Radius/ Å	0.96	0.72	0.92	0.75	0.64	1.38	

جدول (1) : يحتوى على أنصاف الأقطار الكاتيونية لمكونات الفرايت.

أهمية البحث وأهدافه:

نكمن أهمية هذا العمل في تحديد ثوابت المرونة للفرايت باستخدام أطياف الأشعة تحت الحمراء IR ومن ثم تحديد سرعة الموجة المرنة الطولية والقصية وفق اتجاه أحرف البلورة المكعبية خلال شبكة السبينل، ثم دراسة الاستقرار الحراري للفرايت المحضّر باستخدام طريقتي TG/DTA. وتحديد طاقة عتبة الانتقالات الالكترونية من طيف IR.

طرائق البحث و مواده:

حيث x=0.5 حيث $Cu_{1-x}Sb_xFe_2O_4$ السيراميكية ثنائية التلبيد $cu_{1-x}Sb_xFe_2O_4$ من شركة المانية التلبيد (CCDS) من مساحيق أكاسيد أكاسيد (Sb4O6; Fe_2O_3 عالية النقاوة %99.99 من شركة Merck الألمانية وفق الآتى:

تخلط الاكاسيد الثلاثة في بوتقة خاصة وفق النسبة W «50% من الوزن المولي لأوكسيد النحاس وأوكسيد الانتموان ثم تطحن إلى درجة عالية من النعومة. وبعد ذلك يضاف الماء المقطر لهذا الخليط ومن ثم توضع البوتقة على خلاط مغناطيسي بدون تسخين لمدة أربع ساعات لنحصل على خلطة متجانسة. بعد ذلك يجفف الخليط ببطئ ، على خلاط مغناطيسي محمد في مرمّدة لإتمام عملية تلبيد عن طريق وضعه على سخّان كهربائي ، ثم يطحن مرة ثانية، ويوضع المسحوق الناتج في مرمّدة لإتمام عملية تلبيد أولي ،عند درجة حرارة 0° 000 لمدة أربع ساعات لكي نحصل على حالة التبلور المتجانس ثم نتركه يبرد داخل الفرن أولي ،عند درجة حرارة 0° 000 لمدة أربع ساعات لكي نحصل على حالة التبلور المتجانس ثم نتركه يبرد داخل الفرن أولي ،عند درجة حرارة الغرفة بمعدل h 0° 0 مع المسحوق مرة ثالثة ثم يوضع في الفرن عند درجة حرارة إلى درجة حرارة الغرفة بمعدل h 0° 0 مع من المسحوق مرة ثالثة ثم يوضع في الفرن عند درجة حرارة المرابق.

النتائج والمناقشة:

طيف IR: لتسجيل طيف IR خلط مسحوق العينة مع مسحوق بروميد البوتاسيوم KBr بنسبة (1:200) وزناً كي نحصل على شفافية مناسبة. حصلنا على طيف IR للعينة Lasco و $Cu_{1-x}Sb_xFe_2O_4$ باستخدام مقياس الطيف Jasco نوع FT-IR-460 PLUS ،الموجود في المخبر المركزي لكلية العلوم-جامعة تشرين ، الذي يعمل ضمن المجال cm⁻¹ (4000 – 4000) عند درجة حرارة الغرفة. يبيّن الشكل (2) طيف IR لهذه العينة.

شكل (2) :طيف IR للعينة المدروسة ضمن المجال cm⁻¹ (400-1000).

درسنا في عمل سابق ترددات الاهتزاز التي نقع في المجال ¹ cm⁻¹ (400–400) [3] .

بينما سنركز في هذا البحث على تردد اهتزاز المواقع الرباعية \overline{V}_{tet} ، والمواقع الثمانية \overline{V}_{oct} ، وتردد عتبة الانتقالات الالكترونية \overline{V}_{th} . يعزى التردد الرباعي إلى استطالة الرابطة أيون معدن – أيون أوكسجين – (Fe²⁺) (Fe²⁺ – يينما يعزى تردد الثماني إلى اهتزاز الرابطة Oct – (Fe³⁺ – O²⁻) في اتجاه عمودي على المحور الواصل بين أيون معدن وأيون الأكسجين في المواقع الرباعية [4].

• ثوابت المرونة

يعطى ثابت قوة اهتزاز الرابطة أيون معدن – أوكسجين K يعطى ثابت قوة اهتزاز الرابطة أيون معدن – أوكسجين $v = \frac{1}{2\pi} \sqrt{\frac{K}{m}} = c \, \overline{v}$ (1)

حيث C حيث C سرعة الضوء في الخلاء، $v = 2.061 \times 10^{-23} g$ الكتلة المختزلة للحديد والأوكسجين ، v و \overline{v} تردد الاهتزاز والعدد الموجي. يعطى معامل يونغ B الحجمي (معامل الانضغاط) بدلالة ثوابت المرونة Cij بالعلاقة [6]:

$$B = \frac{1}{3}(C_{11} + 2C_{12}) \qquad (2-a)$$

لكن سنحدد هذه الثوابت في حالة انتشار الموجة باتجاه أحرف البلورة المكعبية كما يبيّنه الجدول (2) التالي:

direction	[100]	[010]	[001]
Wave velocity	$V_L = \left(\frac{C_{11}}{\rho}\right)^{1/2}$	$V_{T_1} = \left(\frac{C_{44}}{\rho}\right)^{1/2}$	$V_{T_2} = \left(\frac{C_{44}}{\rho}\right)^{1/2}$

جدول (2): يتضمن علاقات سرعة الموجة حسب اتجاه أحرف البلورة (انظر الشكل 3).

حيث VL ، VT السرعة القصية والسرعة الطولية.

شكل (3): يبيّن اتجاه انتشار الموجة المرنة الطولية والقصية وفق أحرف البلورة حيث U متجهة انتشار الموجة.

بالنسبة إلى فرايت – CuSb فإن C_{12} تهمل في هذه الحالة من الانتشار [7] وبالتالي نجد أن:

$$C_{44} = \frac{C_{11} - C_{12}}{2}$$

$$K = aB = \frac{a}{3}C_{11}$$

$$K = \frac{K_{oct} + K_{tet}}{2}$$
 (2-b)

تم حساب ثابت الشبكة a نظرياً باستخدام قيم أنصاف أقطار المواقع الرباعية rtet ، والمواقع الثمانية roct ونصف قطر أيون الأوكسجين Ro = 0.132 nm وفق العلاقات التالية [8]:

$$a = \frac{8}{3\sqrt{3}} \left[(r_{tet} + R_o) + \sqrt{3}(r_{oct} + R_o) \right] ; \qquad (3-a)$$

يحسب tet و roct الصيغة $(Sb_x^{3+}Fe_{1-x}^{3+})_{tet}[Cu_{1-x}^+Fe_{1+x}^{3+}]_{oct}O_4^{2-}$ بالعلاقتين التاليتين: tet يحسب tet و

$$r_{tet} = xr_{Sb^{3+}} + (1-x)r_{Fe^{3+}} ; \qquad (3-b)$$

$$r_{oct} = \frac{1}{2} [(1-x)r_{Cu^{+}} + (1+x)r_{Fe^{3+}}] ; \qquad (3-c)$$

$$\rho = \frac{ZM}{N_A a^3} \qquad (3-d)$$

$$\rho = 5.45 \quad \text{g.cm}^{-3}$$

وبالتالي نجد أن: a= 8.68 Å ، حيث تعبّر ρ عن كثافة العينة، Z=8 عدد الجزيئات في وحدة الخلية، M الوزن الجزيئي للعينة، N_a عدد أفوغادرو.

من جهة أخرى، تعطى سرعة الموجة المرنة الطولية والقصية خلال العينة بالعلاقة [9]:

$$V_{\rm T} = \frac{1}{4} V_L = \frac{1}{4} (C_{11} / \rho)^{1/2}$$
(4)

• طاقة العتبة Eth

طبقاً لـ Waldron [9] يمكننا تحديد تردد العتبة \overline{v}_{th} للانتقالات الالكترونية من القيمة العظمى للنفوذية في طيف امتصاص IR.

$$E_{th} = hc \,\overline{v}_{th} \tag{5}$$

حيث h ثابت بلانك.

الحركية الجرية µ

تعطى الحركية الجرية بتابعية درجة الحرارة T، وتردد الاهتزاز $\overline{\nu}$ ، وطول القفز b في الموقعين الرباعي والثماني بالعلاقة [10]:

$$\mu = \frac{ed^2 c \overline{v}}{kT} \exp(-E_a / kT) \quad ; \quad E_a \equiv E_{th}$$
(6)
$$d_{tet} = \frac{a\sqrt{2}}{4} \quad ; \quad d_{oct} = \frac{a\sqrt{3}}{4}$$

حيث أن: k ثابت بولتزمان، e شحنة الإلكترون.

$$\mu_m$$
 • تغيّر عزم ثنائي القطب المغناطيسي μ_m

يعرّف تغيّر عزم ثنائي القطب المغناطيسي / dr^d بالنسبة إلى تغيّر المسافة dr الفاصلة بين نوى الذرات المهتزة بالعلاقة [11]:

$$T\% = 10^{-3} \frac{N_A}{3mc^2} (\frac{d\mu_m}{dr})^2$$
(7)

يحتوي الجدول (3) على قيم الترددات الاهتزازية المميزة للمواقع الرباعية والثمانية المستخلصة من طيف IR، النفوذية %T، وثابتا قوة الاهتزاز المحسوبين من العلاقة (1)، وثابت المرونة.

\overline{V}_{tet} (cm^{-1})	Τ%	\overline{V}_{oct} (cm ⁻¹)	Τ%	\overline{v}_{th} (cm^{-1})	K_{tet} ×10 ⁵ (dy n/cm)	K_{oct} ×10 ⁵ (dy n/cm)	C_{11} ×10 ¹¹ (dyn/cm ²)
628.68	10.98	403.70	19.25	906.25	2.875	1.18	70.05

جدول (3) : يتضمن ترددات المواقع الرباعية والثمانية، وتردد العتبة، وثابتا قوة الاهتزاز

يتضمن الجدول (4) نتائج طاقة عتبة الانتقالات الالكترونية، وتغيّر عزم ثنائي القطب المغناطيسي، والحركية الجرية التي حسبت عند درجة حرارة الغرفة T=300°c ، وسرعة الأمواج المرنة الطولية والقصية.

جدول (4) : يحتوي على طاقة عتبة الانتقالات الالكترونية، وتغيّر عزم ثنائي القطب المغناطيسي،والحركية الجرية، والسرعتين الطولية والقصية.

E _{th} (eV)	$\frac{(\frac{\mathrm{d} \mu_m}{\mathrm{d} r})_{\mathrm{tet}} \times 10^{-11}}{(\mathrm{A.cm})}$	$\frac{(\frac{d \mu_{m}}{dr})_{oct} \times 10^{-11}}{(A.cm)}$	$\mu_{tet} \times 10^{-3}$ (cm ² s ⁻¹ V ⁻¹)	$\mu_{oct} \times 10^{-3}$ (cm ² s ⁻¹ V ⁻¹)	$V_L \times 10^5$ (cm/s)	$V_{\rm T} \times 10^5$ (cm/s)
0.11	3.16	4.12	9.65	9.29	11.34	2.83

• التحليل الحراري التفاضلي

Labsys-TG نوع Setaram أجري التحليل الحراري التفاضلي للعينة $Setaram - Cu_{1-x}Sb_xFe_2O_4$ باستخدام جهاز Setaram نوع Setaram في جو غاز الأرغون حيث أخذنا وزناً من العينة قدره mg 67.691 mg ووضع في بوتقة من البلاتين سعتها الم 100 .ثم أخذنا منحني تغير الوزن %TG ومنحني تدفق الحرارة DTA في المجال الحراري c (20–800) بمعدل تسخين قدره $H_r = \frac{dT}{dt} = 10^\circ C / \min$

 $. Cu_{1-x}Sb_xFe_2O_4$ شکل (4): مخطط TG/DTA للعينة (4)

الحرارة بين بداية القمة وتهايتها، والسعة الحرارية لحت صغط نابت.							
t(⁰ C)	100	169.44	238.88	305.55	372.22		
TG%	0.35	0.66	0.94	1.36	1.47		
Η (μV)	1.11	1.38	1.19	0.76	0.26		
S (mm ²)	371	371	313	204	74		
$\delta T(^0C)$	69.44	66.66	61.11	63.88	50		
$K' \cdot C_P$ $(cm^2 g^{-1} \circ C^{-1})$	0.78	0.82	0.75	0.47	0.22		
$\frac{C_P / K'' \times 10^{-3}}{(V \cdot g^{-1} \circ C^{-1} \cdot s)}$	0.10	0.12	0.10	0.07	0.02		

جدول (5) : يتضمن قيم درجات حرارة للقمم الماصة للحرارة، وتغير الوزن، وارتفاع القمة الماصة للحرارة، ومساحة القمة، وفرق درجة الحرارة بين بداية القمة ونهايتها، والسعة الحرارية تحت ضغط ثابت.

تعبّر المساحة S الواقعة تحت القمة الماصة أو ارتفاع هذه القمة عن تغيرات الانتالبية ΔH . وتعطى الانتالبية بدلالة المساحة بالعلاقة التالية [16]:

$$S = \pm \Delta H.m.K'$$
(8)
$$K' \cdot C_{p} = \frac{S}{m \cdot \delta T}$$

حيث K' عامل الشكل الهندسي، ويقدر بوحدة $_{-rm}^{-}J^{-1}$. وتشير الإشارة الموجبة إلى النفاعلات الماصة للحرارة $\Delta H < 0$. الحرارة $\Delta H > 0$.

ونلاحظ أن تغيّر الانتالبية يبدأ من القمة الماصة الثانية الشكل (5). ويعزى ذلك إلى زيادة تغير الوزن. من جهة أخرى، يمكننا قياس السعة الحرارية تحت ضغط ثابت CP وفق العلاقة التالية [16]:

$$C_P = K'' \cdot \frac{\Delta T}{m \cdot H_r}$$
; $\Delta T \equiv H$ (9)

حيث Hr معدل التسخين، K'' عامل معايرة الجهاز، ويقدر ب $J_s^{-1}V^{-1}$. يبيّن الشكل (6) العلاقة بين السعة الحرارية تحت ضغط ثابت مع درجة حرارة معالجة العينة، ونلاحظ من هذا الشكل أن السعة تبلغ قيمة حدية حوالي 175 ^{0}c . ويعكس هذا الشكل تغير الانتالبية بعد القمة الماصة الثانية.

شكل (6) : تغيّر السعة الحرارية تحت ضغط ثابت مع درجة حرارة المعالجة.

الاستنتاجات والتوصيات

نستنتج من هذا العمل النقاط الآتية :

 يشير طيف IR إلى حزمتي امتصاص رئيسيتين عند التردد R⁻¹ 628.68 للمواقع الرباعية، و 409.85 cm⁻¹ للمواقع الثمانية في الفرايت المدروس.

. B =
$$\frac{C_{11}}{3}$$
 = 23.58×10¹¹ dyn/cm² حدد معامل الانضغاط في الحالة المكعبية بالقيمة. B = $\frac{C_{11}}{3}$

- .10 ⁵ dyn/cm نابتي قوة الاهتزاز في الموقعين الرباعي والثماني ، وكانا من مرتبة dyn/cm
- 4. حددت طاقة عتبة الانتقالات الالكترونية Eth =0.11eV من طيف IR وهي نتفق مع القيمة 0.10eV
 4. للمرجع [4].
- تشير نتائج TG/DTA أن القمم تعزى إلى عمليات نزع الرطوبة ونزع جذور الهيدروكسيدات المترافقة مع الاكاسيد المعدنية.
 - . $K' \cdot C_p = 0.6 \ (cm^2 g^{-1} \circ C^{-1})$ يبلغ معدل السعة الحرارية للعينة تحت ضغط ثابت (6
- 7. تتناقص الانتالبية في المجال الحراري $c^{0} c$ 375– 200 بعد ذلك تبدي السعة الحرارية قيمة حدية عند الدرجة c^{0} 175 تشير إلى وجود الرطوبة .

المراجع :

- 1. Mah Rukh Siddiquash, Effect of Doping of Various Metal cations on Structural, Electrical and Magnetic Properties of Nano –cobalt Ferrites. Dissertation submitted to the Quaid – i- Azam Uni. Islamabad,2008,p.5.
- 2. . Gisbert Grossmann et al., Struktur und Bindung-atome und Moleküle, VEB Deutscher Verlag für Grundstoffindustrie, Leipsig, 1985, p.167
- 3. Halabi M., AL-ARAJ B., Investigation of Optical Properties of $Cu_{1-x}Sb_xFe_2O_4$ -Ferrite Using IR and Vis/UV techniques, Tishreen University Journal for Research and Scientific Studies,2012.
- 4. Dawoud H. et al., a structural study of CuZn-ferrite by infrared spectra, J.Al-Aqsa Unv., 2006,247-262.
- 5. Mazen S., Abed Allah M., Nakhaa R.and Zaki H., Mat. Chem.and Phys., 1993, 34-35.
- 6. Modi K.B., Gajera J.D., Pandya M.P., Vora H.G., Joshi H.H., far- infrared spectral studies of Mg and Al co-substituted Li ferrite, Pramana J. of Physics, 2004, V.62, No.5, 1173-1180.
- 7. Weissmantel Ch., Hamann C., Grundlagen der Festkoeperphysik, VEB Deutscher Verlag der Wissenschaften, Berlin 1981, p.265.
- 8. Hemeda O.M., electron spin resonance and cation distribution studies of Co0.6 Zn0.4MnxFe2-xO4 ferrite system, J. of Magnetic Material and Magnetism MMM, 2002, 50-60.
- 9. Waldron R.D., 1955-, Phys. Rev., 99, 1727.
- 10.] Hemeda O.M., Abd El-Ati M.I., spectral studies of CoZn ferrite at different soaking times, Matt. Lett., 2001, 42-47.
- 11. Dwcius J., Nalu O. and Thomson A., Proc.R. Aoc.London. Ser. A, 1963, V. 27, 295.
- 12. Abo El Ata A.M., Attia S.M., El Kony D., Hal-Hamada A., spectral, initial magnetic permeability and transport studies of LiCo-ferrite, J. of MMM, 2005, p.28-36.
- 13. Takahiro K., et.al., effect of water vapor on the thermal decomposition process of Zn hydroxide chloride and crystal growth of zinc oxide, J.of sol.stat. chem.., 2011,V. 184,589-596.
- 14. Pereza M.R. et.al., influence of divalent metal on the composition products of hydrotalcite-like ternary systems, J.of MMM, 2012, V.132, 375-386.
- 15. Parida K.M., Lagnamayee M., carbonate intercalated Zn/Fe layered double hydroxide: a novel photocatalyst for the enhanced photo degradation of azo dyes, Chem.Eng. J., 2012, V.179, 131-139.
- 16. Bhadedhia H.K.D.H., thermal analysis techniques, Unv. Of Cambridge, Mat. Science and Metallurgy, 2012.