2017 (4) مجلة جامعة تشرين للبحوث والدراسات العلمية – سلسلة العلوم الأساسية المجلد (39) العدد (4) Tishreen University Journal for Research and Scientific Studies - Basic Sciences Series Vol. (39) No. (4) 2017

 $Ni_{0.65}Zn_{0.35}Si_{x}Fe_{2-x}O_{4}$ الخصائص البنيوية للفرايت

لين محمد اسماعيل *

(تاريخ الإيداع 23 / 4 / 2017. قُبِل للنشر في 4 / 7 /2017)

🗆 ملخّص 🗆

$$\begin{split} \lambda \dot{a}_{0.65} Zn_{0.35} Si_x Fe_{2-x} O_4 & \lambda \dot{a}_{0.65} Zn_{0.35} Si_x Fe_{2-x} O_4 \\ \dot{a}_{0.65} Zn_{0.35} Si_x Fe_{2-x} O_4 & \lambda \dot{a}_{0.65} Si_x Fe_{2-x} O_4 \\ \dot{a}_{0.65} Zn_{0.35} Si_x Fe_{2-x} O_4 & \lambda \dot{a}_{0.65} Si_x Fe_{2-x} O_4 \\ \dot{a}_{0.65} Zn_{0.35} Si_x Fe_{2-x} O_4 & \lambda \dot{a}_{0.65} Si_x Fe_{2-x} O_4 \\ \dot{a}_{0.65} Zn_{0.35} Si_x Fe_{2-x} O_4 & \lambda \dot{a}_{0.65} Si_x Fe_{2-x} O_4 \\ \dot{a}_{0.65} Zn_{0.35} Si_x Fe_{2-x} O_4 & \lambda \dot{a}_{0.65} Si_x Fe_{2-x} O_4 \\ \dot{a}_{0.65} Zn_{0.35} Si_x Fe_{2-x} O_4 & \lambda \dot{a}_{0.65} Si_x Fe_{2-x} O_4 \\ \dot{a}_{0.65} Zn_{0.35} Si_x Fe_{2-x} O_4 & \lambda \dot{a}_{0.65} Si_x Fe_{2-x} O_4 \\ \dot{a}_{0.65} Zn_{0.35} Si_x Fe_{2-x} O_4 & \lambda \dot{a}_{0.65} Si_x Fe_{2-x} O_4 \\ \dot{a}_{0.65} Zn_{0.35} Si_x Fe_{2-x} O_4 & \lambda \dot{a}_{0.65} Si_x Fe_{2-x} O_4 \\ \dot{a}_{0.65} Zn_{0.35} Si_x Fe_{2-x} O_4 & \lambda \dot{a}_{0.65} Si_x Fe_{2-x} O_4 \\ \dot{a}_{0.65} Zn_{0.35} Si_x Fe_{2-x} O_4 & \lambda \dot{a}_{0.65} Si_x Fe_{2-x} O_4 \\ \dot{a}_{0.65} Zn_{0.35} Si_x Fe_{2-x} O_4 & \lambda \dot{a}_{0.65} Si_x Fe_{2-x} O_4 \\ \dot{a}_{0.65} Zn_{0.55} Si_x Fe_{2-x} O_4 & \lambda \dot{a}_{0.65} Si_x Fe_{2-x} O_4 \\ \dot{a}_{0.65} Zn_{0.55} Si_x Fe_{2-x} O_4 & \lambda \dot{a}_{0.65} Si_x Fe_{2-x} O_4 \\ \dot{a}_{0.65} Zn_{0.55} Si_x Fe_{2-x} O_4 & \lambda \dot{a}_{0.65} Si_x Fe_{2-x} O_4 \\ \dot{a}_{0.65} Zn_{0.55} Zn_{0.55} Si_x Fe_{2-x} O_4 \\ \dot{a}_{0.65} Zn_{0.55} Zn_{0.55} Zn_{0.55} Si_x Fe_{2-x} O_5 \\ \dot{a}_{0.65} Zn_{0.55} Zn_{0.55} Zn_{0.55} Zn_{0.55} Zn_{0.55} \\ \dot{a}_{0.55} Zn_{0.55} Zn_{0.5$$

علاوة على ذلك، دَرِسَ تأثير إضافات السيليكون على الطول القفزي للإلكترون بين أيون الحديد الثنائي والثلاثي • $Fe^{3+} \Longleftrightarrow Fe^{2+}$ فلوحظ أن الطول القفزي للإلكترون يزداد بزيادة إضافات السيليكون حتى القيمة • x =0.2 ، ثم يقل تدريجيا مع إضافات تزيد عن هذه النسبة.

الكلمات المفتاحية : سبينل فرايت؛ الطول القفزي للإلكترون ؛ ثابت الشبكة؛ طاقة النتشيط؛ درجة حرارة الغرفة –RT

^{*} ماجستير - كلية العلوم - جامعة تشرين - اللاذقية - سورية

مجلة جامعة تشرين للبحوث والدراسات العلمية – سلسلة العلوم الأساسية المجلد (39) العدد (4) Tishreen University Journal for Research and Scientific Studies - Basic Sciences Series Vol. (39) No. (4) 2017

Structural properties of Ferrite system $Ni_{0.65}Zn_{0.35}Si_xFe_{2-x}O_4$

Leen Mohammed Ismael^{*}

(Received 23 / 4 / 2017. Accepted 4 / 7 /2017)

\Box ABSTRACT \Box

The sample of the series $Ni_{0.65}Zn_{0.35}Si_xFe_{2-x}O_4$ ferrite with $0 \le x \le 4$ was prepared using the usual ceramic technique. The single phase spinel structure of the sample was confirmed by X-ray diffractometry technique. The lattice parameter a decreases with

increasing concentration x due to the difference in the ionic radii of Fe^{3+} and Si^{4+} ions.

We have also studied The effect of silicon on electron hopping length, founding that the electron hopping length is increasing by addition of silicon up to x = 0.2 and gradually decreasing by adding silicon over this value.

Keywords: Spinel ferrite; electron hopping length; lattice parameter a ; activation energy; RT-room temperature.

^{*}Master- Faculty of sciences- Tishreen university – Lattakia - Syria.

مقدمة:

الفرايت (Ferrite) عبارة عن خليط من أكاسيد المعادن ، والحديد الثلاثي التكافؤ ، كمكون أساسي له ويتبلور في ثلاثة أنواع :

- 1. الفرايت العادي ذي بنية السبينل المكعبية وصيغته (AB₂O₄) ،
 - حيث : A معدن ثنائي التكافؤ .
 - 2. الغارنيت صيغته(AB₁₂O₁₉).
 - د. السداسي (المواد السيراميكية) صيغته (M₃Fe₅O₁₂)،

. $Y_3Fe_5O_{12}$ - ستل أيونات المعادن الأرضية مثل: M - يمثل أيونات المعادن الأرضية مثل - M

تعتبر بنية السبينل مكعبية متمركزة الأوجه FCC أبسط بنية للفرايت. وتدعى هذه البنية بذلك نسبةً إلى فلز السبينل ذي الصيغة MgAl₂O4:

$A_{1-x}^{II} B_x^{III} Fe_2 O_4$

يشير "A إلى أيون معدني ثنائي التكافؤ مثل : Cd , Co , Mg , Ni , Zn تقع أنصاف أقطارها الأيونية بين (Å 1.10 Å) ، ويشير "B إلى أيون معدني ثلاثي التكافؤ مثل: Fe ,Ti ,Al ,Co التي تقع أنصاف أقطارها الأيونية بين (Å 0.90 – 0.75) .

تتكون بنية السبينل FCC من 32 أيون أوكسجين والتي يوجد فيها نوعان من المواقع المتداخلة هما: أربع وستون موقعاً رباعياً ومحاط كل أيون معدني بأربعة أيونات أوكسجين ، وتسمى المواقع A الرباعية (tetrahedral) (sites، واثنان وثلاثون موقعا ثمانيا ومحاط كل أيون معدني فيها بستة أيونات أوكسجين تسمى المواقع B الثمانية (octahedral sites) الشكل (1).

الشكل (1) : المواقع الرباعية والمواقع الثمانية في شبكة الفرايت.

الفرايت العادى

في هذا النوع من الفرايت تشكّل الكاتيونات A ثمن المواقع الرباعية، وكاتيونات النوع B نصف المواقع الثمانية في خلية الواحدة أي تحتوي خلية الواحدة على ثماني جزيئات من(AB₂O₄) أي الثمانية في خلية الواحدة أي تحتوي خلية الواحدة على ثماني $(AB_2O_4)_8 \equiv A_8B_{16}O_{32}$

، $\frac{1}{2}a$ مقدارها مقدارها (octant) ولفهم التركيب البلوري لهذا المركب تقسم الخلية الواحدة إلى ثمانية أثمان (octant) بحافة مقدارها $\frac{1}{2}a$

وتكون أيونات الأوكسجين موزعة بنفس الترتيب السابق على هذه المكعبات، ويحتوي كل مكعب على أربعة أيونات أوكسجين في المستوى القطري، وكل أيون أوكسجين يقع على مسافة تساوي ربع المسافة القطرية لركنين متقابلين في المكعب.

الشكل (2) مواضع أيونات الأوكسجين والمعادن في شكلين ثمانيين متجاورين.

مواضع أيونات المعادن تكون مختلفة في مكعبين متجاورين متشاركين في الوجه ومتشابهة في مكعبين متجاورين متفقين في الحافة . وبذلك نحصل على صورة متكاملة لأيونات المعادن في الفرايت .

كل أيون ثماني الترتيب محاط بستة أيونات من المواقع رباعية الترتيب، وكل أيون أوكسجين محاط بأيون رباعي الترتيب وثلاثة أيونات ثمانية الترتيب .

وخواص الفرايت الطبيعية يتحكم فيها توزيع الحديد ،والأيونات الثنائية بين المواقع ثمانية الترتيب وبين الرباعية الترتيب .وهذا التوزيع يعطى بالصيغة التالية :

$Me_x^{II} Fe_{1-x}^{III} \left[Me_{1-x}^{II} Fe_{1+x}^{III} \right] O_4$

حيث الأيونات التي بداخل الأقواس تعبر عن المواقع الثمانية الترتيب B والأيونات خارج الأقواس تعبر عن مواقع رباعية الترتيب A .

عندما: x = 1 يسمى الفرايت من النوع العادي (Normal Ferrite) مثال: $ZnFe_2O_4$.

أما في حالة: x = 0 يسمى الفرايت المعكوس (Inverse Ferrite) مثال: NiFe₂O₄.

أما عندما: $0\langle x\langle 1
angle$ يدعى فرايت مختلط ، وهو كحال معظم الفريتات.

يعتمد توزيع الأيونات في الفرايت على طريقة التحضير ودرجة حرارة المعالجة .ويعتمد أيضا على ثلاثة أسس هي:

1-نصف قطر الأيون المعدني.

2–التوزيع الإلكتروني للأيون .

3–الطاقة الإلكتروستاتيكية للشبكة البلورية .

لذلك فإننا نتوقع بأن الأيونات ذات الحجم الصغير والمجال الإلكتروستاتيكي القوي تفضل المواقع رباعية الترتيب ، والأيونات ذات الحجم الكبير والمجال الإلكتروستاتيكي الضعيف تفضل المواقع ثمانية الترتيب . وبصفة عامة فإن الأيونات الثلاثية والرباعية التكافؤ أصغر في الحجم من الأيونات الثنائية التكافؤ .

الفرايت المعكوس

. B(AB)O₄ بين المواقع الثمانية والمواقع الرباعية بحيث تأخذ الصيغة التالية B بين المواقع الرباعية بحيث تأخذ الصيغة التالية B (AB)O₄ . وهذه البنية نتوزع كاتيونات B بين المواقع الثمانية O_4 مثال على ذلك الماغنيت Fe₃O₄ الذي يأخذ الصيغة O_4 ، ولمواقع الرباعية بحيث تأخذ الصيغة السبينل مقتصرة على مثال على ذلك الماغنيت Fe₃O₄ الذي يأخذ الصيغة المعادن الانتقالية ، على سبيل المثال Fe₃O₄ . والمواقع الأكاسيد بل تتعدها إلى سبينل السلفيدات والسيليندات للمعادن الانتقالية ، على سبيل المثال Fe²+ Se

الفرايت المختلط (Mixed Ferrite)

أما الفرايت المختلط والذي يكون فيه أيون المعدن مع الحديد موزعين بطريقة عشوائية بين المواقع B, A ، أي أن الحديد الثلاثي ⁺³Fe يفضل المواقع B والأيون الثنائي ⁺²Me يفضل المواقع A . ويمكننا معرفة هذا التوزيع للأيونات بين B, A بوساطة حيود الأشعة السينية أو حيود النيترونات أو عن طريق دراسة الإشباع المغناطيسي .

أهمية البحث وأهدافه:

يهدف هذا البحث إلى دراسة تأثير أيونات السيلكون على فريتات النيكل – زنك والمضافة بتراكيز مختلفة إلى العينات المحضرة بالطريقة السيراميكية العادية ، وتكمن أهمية البحث في دراسة تغير قيمة ثابت الشبكة a بتغير تركيز السيلكون ، وتأتي أهميته- أيضاً- بمعرفة تأثير إضافات السيلكون على الطول القفزي للإلكترون بين الحديد الشائى والثلاثي.

طرائق البحث ومواده:

نطبق في هذا البحث الطريقة السيراميكية لتحضير العينات ، كما تم استخدام مقياس حيود الأشعة السينية (Shimadzu X–ray powder diffractometer) لرسم مخططات انعراج الأشعة السينية لكل عينة. وقد تم حساب ثابت الشبكة متوسط حجم الحبيبات وطول القفز الإلكتروني باستخدام المعادلات المناسبة لذلك.

القسم التجريبي(Experimental):

تحضير العينات (Preparation of the Samples):

تُحضّر العينات بأخذ أكاسيد نقية جداً 99.9% من مكونات العينة وبنسب وزنية معينة. تخلط الأكاسيد التالية قبل الإشابة بالسيليكون ليتم Ni CO₃ ; ZnO ; Fe₂ O₃ التفاعل وفق المعادلات الآتية:

$$ZnO + Fe_{2} O_{3} \rightarrow ZnFe_{2}O_{4}$$
81.369 159.691 241.06 gr
(1)
$$NiCO_{3} + Fe_{2} O_{3} \rightarrow NiFe_{2}O_{4} + CO_{2}^{\uparrow}$$
118.718 159.691 234.4 gr
(2)

وحسب المعادلة (1) نزن بالميزان الرقمي الحساس 241.06 gr من ZnFe2O4 . ولتقليل الكمية المستخدمة من أجل التوفير نقسم على 2 *لو3 لو4 لو5.......* نقسم هنا على 5 ثم نضع بعد ذلك المسحوق الناتج أي فرايت زنك في ZnFe₂O₄ وعاء ،ونضيف إليه الماء المقطر لزيادة عملية المزج ولتجانس المسحوق ،ثم نضعه على سخان لمدة أربع ساعات وبوساطة دوران المغناطيس الموجود ضمن المزيج في الوعاء تحصل عملية المزج والتجانس في المسحوق.

نقوم بنفس الإجراءات والخطوات عند تحضير مسحوق فرايت النيكل ، أي نزن بالميزان الرقمي الحساس 234.4 gr .

بعد ذلك نضع المسحوق على مسخن بتماس مباشر مع الهواء حتى يتبخر الماء (عملية التحميص بالهواء) ، وحرصاً على زيادة درجة تجانس المزيج نُجري عملية تحميص أولية (Pre-sinter) حيث نُثبت درجة حرارة الفرن على 2°1000 ، ونبقي العينة داخل الفرن لمدة خمس ساعات ،ثم نطفئ الفرن أي نوقف عملية التحميص، ونترك العينة داخل الفرن حتى تبرد وتصبح بدرجة حرارة الغرفة ، وتكون العينة عندئذ قد تخلصت من الشوائب التي تتبخر عند درجات الحرارة العالية .

 $ZnFe_2O_4$ نقوم بعد ذلك بطحن المسحوق الناتج عن عملية التحميص بمرحلتها الأولى سواء أو $NiFe_2O_4$ كل $NiFe_2O_4$ على حدة لمدة لا نقل عن أربع ساعات ،ويغربل الناتج في منخل دقيق جداً.

 $Ni_{0.65}$ $Zn_{0.35}$ Fe_2 O_4 . الزنك - الزنك - الزنك نحصل على عينة فرايت نيكل - الزنك .

$$\frac{65}{100} \qquad Ni \quad Fe_2 \quad O_4 = \frac{65 \times 234.3}{100} = 152.32 gr$$

$$\frac{35}{100} \qquad Zn \quad Fe_2 \quad O_4 = \frac{35 \times 241.06}{100} = 84.37 \, gr$$

ولتقليل الكمية نقسم على 10 ثم نزن بالميزان 15.236 gr من NiFe₂O₄ من 8.437 g & NiFe₂O₄ من ZnFe₂O₄ ولتقليل الكمية نقسم على 10 ثم نقوم بعد ذلك بتجفيف الآن نضع كلا المسحوقين في الخلاط مع الماء المقطر من أربع إلى ست ساعات ،ثم نقوم بعد ذلك بتجفيف المزيج على تماس مباشر مع الهواء (على السخان).

ومن ثم نجري عملية تحميص ثانية (Sinter) ،أي نضع المسحوق الناتج بالفرن عند درجة حرارة تصل إلى 1200°c لمدة من 4-6 ساعات لكي نحصل على البنية البلورية للمركب بشكل صحيح . وبذلك يأخذ المركب الأول الأساسي الصيغة الكيميائية التالية:

 $Ni_{0.65}Zn_{0.35}$ $Fe_2 O_4$

ثم نخلط نسب مختلفة من السيليكون ليأخذ المركب الصورة الكيميائية الآتية:

$$Ni_{0.65}Zn_{0.35}Si_{0.1}Fe_{1.9} O_4$$
$$Ni_{0.65}Zn_{0.35}Si_{0.2}Fe_{1.7} O_4$$
$$Ni_{0.65}Zn_{0.35}Si_{0.3}Fe_{1.7} O_4$$

تخلط الأكاسيد لمدة أربع ساعات بماء مقطر، ثم يجفف المخلوط ،ويوضع في عدة بواتق (كل مخلوط في البوتقة الخاصة به)، بعد ذلك توضع البواتق في فرن حراري عند الدرجة c 3000لمدة أربع ساعات لكي تتطاير الشوائب غير المرغوب فيها بصورة أكاسيد، ثم تخرج البواتق وبها المخاليط من الفرن ،و يطحن كل مخلوط في هول عقيقي لمدة أربع ساعات .بعد ذلك يضغط كل مخلوط على هيئة أقراص قطرها المحاليط من الفرن ،و يطحن كل مخلوط في مول عقيقي لمدة أربع ساعات .بعد ذلك يضغط كل مخلوط على هيئة أقراص قطرها المخاليط من الفرن ،و يطحن كل مخلوط في مول معنوا في من المواتق وبها المخاليط من الفرن ،و يطحن كل مخلوط في هول عقيقي لمدة أربع ساعات .بعد ذلك يضغط كل مخلوط على هيئة أقراص قطرها المحاليط من الفرن ،و يطحن كل مخلوط في مول معنيقي لمدة أربع ساعات .بعد ذلك يضغط كل مخلوط على هيئة أقراص قطرها المعا عند ضغط أربع ساعات .ما مخلوط على شريحة من السيلكا c_2 الفرن الحراري عند الدرجة من الموات ولما من الفرن الحراري عند الدرجة أربع ساعات .ما مخلوط على شريحة من السيلكا c_2 الفرن الحراري عند الدرجة مع أربع ساعات .ما مخلوط على شريحة من السيلكا c_3 الفرن الحراري عاد الدرجة من الموات ولما من الفرن الحراري عند الدرجة مع أربع ساعات .ما مخلوط على شريحة من السيلكا c_3 الفرن الحراري عند الدرجة مع أربع الما على معاد من السيلكا أربع ساعات ، ثم يطفئ الفرن والأقراص بداخله، ويترك ليبرد حتى اليوم التالي (بحدود 18 ساعة) .

وأخيراً تجلخ العينات بواسطة المبرد لإكسابها سطحاً أملساً ،وللتخلص من النتوءات والتشوهات الشكلية.

: (Identification of the Prepared Samples) التعرف على العينات المحضرة

تم رسم مخططات انعراج الأشعة السينية لكل عينة باستخدام مقياس حيود الأشعة السينية -Shimadzu X) (ray powder diffractometer للمسحوق وذلك في درجة حرارة الغرفة لمعرفة البنبة البلوري لها ، والتأكد من وحدانية الطور حيث عُرضت العينات وكانت على شكل مسحوق لأشعة (Cu-Ka (λ = 1.5411Å) (المختبر المركزي ، جامعة طنطا).

كما اجريت القياسات التجريبية في قسم الطبيعة (الفيزياء)-كلية العلوم – جامعة طنطا – جمهورية مصر العربية.

دساب ثابت الشبكة (lattice parameter) :

يحسب ثابت الشبكة a مباشرة باستخدام العلاقة:

$$a = d_{hkl} \sqrt{h^2 + k^2 + l^2}$$
 (1)

حيث d المسافة الفاصلة بين مستوبين بلورين (hkl) ، (interplaner distance) ، ورائن ميلر لكل للمستويين (Miller indices) .

يمكننا حساب المسافة البلورية b من قانون براغ (Bragg's law):

n
$$\lambda$$
= 2 d sin θ (2)

حيث θ زاوية براغ المعتمدة المقابلة لكل مستو انعكاس. λ طول موجة الأشعة السينية (X-ray wavelength).

n عدد صحيح.

متوسط حجم الحبيبات (nanocrystalline):

يقدر حجم الحبيبات من الخطوط المنعكسة في مخططات انعراج الأشعة السينية باستخدام العلاقة:

$$t = \frac{K \lambda}{h_{\frac{1}{2}} \cos \theta}$$
(3)

حيث: K ثابت الشكل الهندسي ،وقيمته 0.9. h1/2 نصف العرض للشدة المنعكسة في انعراج الأشعة السينية.

النتائج والمناقشة:

النتائج

انعراج الأشعة السينية لفيريتات النيكل زنك المطعم بالسيليكون:

يوضح الشكل (1) حيود الأشعة السينية لفيريتات نيكل الزنك المطعم بالسليكون Si بالنسب (x=0.0,0.1,0.2,0.3,0.4) حيث يأخذ المركب الصيغة:

 $Ni_{0.65}Zn_{0.35}Si_{x}Fe_{2-x}O_{4}$

حيث x هي نسبة السيليكون في المركب.

يحتوي الجدول (1) على المسافة بين مستويين بلوريين b ، والنسبة المئوية لشدة الانعكاس (٥/١).

وهذه النتائج قورنت بنظيرتها المأخوذة من بطاقات JCPDS وهي اختصار لـ

(Joint Committee on Powder Diffraction Stander)

والتي تخص فرايتات النيكل زنك ،فوجد أن نتائجنا متطابقة معها وأن مركباتنا تأخذ الشكل المكعبي البلوري.

يوضح الجدول (2) نتائج حساب المسافة بين مستويين بلوريين d ، و شدة الانعكاس من حيود الأشعة السبنية.

الشكل (1): حيود الأشعة السينية لفيريتات

Plane hkl	jcpds NiFe	card for $e_2 O_4$	The prepared $NiFe_2O_4$		
	d/ nm	(I/I ₀)%	d /nm	(I/I ₀)%	
111	0.482	20	0.48176	23	
220	0.2948	30	0.2949	36	
311	0.2513	100	0.25162	100	
222	0.2408	8	0.24086	6	
400	0.2085	25	0.2076	28	
331	0.19125	4	0.19144	3	
422	0.17025	8	0.17039	9	
511	0.16051	30	0.16052	31	
440	0.1476	40	0.1477	44	
531	0.141	2	0.14086	1	
620	0.13187	6	0.13208	4	
533	0.12706	10	0.12740	7	
622	0.12573	4	0.12596	4	

الجدول (1) : يبين مقارنة بين قيم b والنسبة المئوية لشدة الانعكاس (I/l_o) من أجل x =0.0 مع نظيرتها المأخوذة من بطاقات JCPDS

الجداول (c,b,a-2): تحتوي على البارامترات المأخوذة من

طيوف حيود أشعة – X للعينات المدروسة

(a)

Hkl	x = 0.0				x=0.1			
	20	d/Å	a/Å	I/I ₀	20	d/Å	a/Å	I/I ₀
220	29.2	3.057	8.646	32.467	29.4	3.051	8.629	28.1
311	34.6	2.59	8.59	100	34.4	2.617	8.679	100
222	36	2.49	8.625	10.389	36.4	2.47	8.556	6.493
400	42.6	2.12	8.48	27.922	42.2	2.173	8.692	24.095
422	52.6	1.73	8.475	24.675	52.4	1.752	8.583	20.799
511	55.8	1.64	8.521	33.766	56	1.649	8.568	32.679
440	61.4	1.502	8.536	22.077	61.6	1.508	8.53	20.199

(b)

Hkl	x = 0.2				x=0.3			
	20	d/Å	a/Å	I/I ₀	20	d/Å	a/Å	I/I ₀
220	29.6	3.03	8.57	53.225	29.6	3.027	8.561	43.65
311	34.6	2.604	8.636	100	34.35	2.574	8.536	100
222	36.4	2.479	8.587	13.709	36.6	2.463	8.528	9.523
400	42.4	2.139	8.556	27.419	42.43	2.11	8.44	30.952
422	52.6	1.746	8.553	20.564	52.6	1.734	8.494	26.19
511	56.2	1.642	8.532	48.38	56.4	1.637	8.506	49.193
440	61.7	1.509	8.536	33.064	61.62	1.502	8.496	32.539

(c)

Hkl	x = 0.4			X= 0.5				
	20	d/Å	a/Å	I/IO	20	d/Å	a/Å	I/IO
220	29.8	3.009	8.51	51.619	29.8	3.009	8.51	45.16
311	35	2.574	8.536	100	35.4	2.544	8.437	100
222	36.8	2.451	8.49	11.29	37	2.44	8.452	12.096
400	42.8	2.122	8.488	26.612	42.8	2.122	8.488	29.838
422	53.4	1.722	8.436	20.797	53.8	1.711	8.382	18.548
511	57	1.621	8.422	53.22	56.2	1.642	8.532	57.258
440	62.4	1.493	8.445	38.709	62.2	1.497	8.468	41.129

يوضح الشكلان (2,1) تأثير إضافات السيليكون على ثابت الشبكة البلورية a يوضح الشكلان (2,1) تأثير إضافات السيليكون على ثابت الشبكة البلورية $Ni_{0.65}Zn_{0.35}Si_xFe_{2-x}~O_4$ نيكل – الزنك

حيث : (x=0.0,0.1,0.2,0.3,0.4) .

أدى ذلك لتقليص أبعاد الشبكة البلورية .

ونلاحظ على هذا الشكل أن إضافة السيلكون تبدأ بالتأثير على ثابت الشبكة البلورية بعد النسبة x =0.1. ووجدنا أيضاً أن نتائجنا تتفق مع نتائج باحثين آخرين. [10.9.8.7.6.5.4.3]

يبين الشكل (2) تغير حجم الحبيبة T مع محتوى السيلكون في عينة الفرايت حيث تم حساب حجم الحبيبيات من العلاقة: ^[11,7]

$$T = \frac{k \lambda}{h_{\frac{1}{2}} \cos \theta}$$

ونلاحظ من هذا الشكل أن إضافات السيليكون لمركب فريتات النيكل زنك تعمل على تقليل حجم الحبيبات . [12]

ويمكن تفسير ذلك بأنه أثناء تفاعل العينات عند درجة حرارة $c ~1200^\circ$ بالفرن فإن أيونات السيليكون تهاجر من داخل الحبيبة إلى جدرانها ، وهذا يعمل على إبطاء حركة الجدار وبالتالي إنقاص حجم الحبيبات .

الشكل (2) :العلاقة بين حجم الحبيبات T وإضافات السليكونx.

تأثير السليكون على الطول القفزى للإلكترون:

يُعّبر عن الطول القفزي للإلكترون في المواقع الثمانية والمواقع الرباعية بالمسافة بين الأيونات المغناطيسية في كلا الموقعين . ويتم حساب الطول القفزي للإلكترون باستخدام العلاقة : ^[13]

$$L = a \frac{\sqrt{2}}{4}$$

حيث: L :الطول القفزي للإلكترون. a :ثابت الشبكة البلورية .

يبين الشكل (3) تأثير إضافات السيليكون على الطول القفزي للإلكترون بين أيون الحديد الثنائي والثلاثي $Fe^{3+} \Longleftrightarrow Fe^{2+}$

يُلاحظ من الشكل أن الطول القفزي للإلكترون يزداد بزيادة إضافات السيليكون حتى إضافة x =0.2 ، ثم يقل تدريجيا مع إضافات السيليكون التي تزيد عن هذه النسبة. وهذا يدل على أن السيليكون عندما يحل محل أيونات الحديد في الأماكن الثمانية الترتيب ، فإن نسبة أيونات الحديد عند الترتيب الثماني تقل بزيادة نسبة السليكون مما يؤدي إلى زيادة الطول القفزي للإلكترون فتسبب زيادة المقاومة النوعية .

أما عند زيادة السليكون عن x =0.2 فإن بعض أيونات الحديد الثلاثية التكافؤ، تهاجر من المواقع الرباعية الترتيب إلى المواقع الثمانية الترتيب نتيجة إحلال أيونات السليكون بأماكن أيونات الحديد في المواقع الرباعية. [13]

وهذا يؤدي إلى زيادة أيونات الحديد في المواقع الثمانية الترتيب مما يقلل الطول القفزي للإلكترون وبالتالي تتخفض المقاومة النوعية.

المراجع:

[1] Modern Ferrite Technology, Crystal Structures of Ferrites, p. 52–69.

[2] The fifth workshop on physics of Semiconductor and Laser, 18-20 May 2008, Tishreen University, Lattakia, Syria.

[3] M.A.EL HITI, M.A.AHMED and M.E.EL SHABASY, STRUCTURAL STUDY OF Ni_x Mg_{1-x} Fe₂O₂ FERRITES, phase transitions, 1996, vol. 56, pp.87-95, Tanta University, Egypt.

[4] A.M.Abo El Ata, S.M. Attia, D. El Kony, A.H. Hammadi , Spectral, initial magnetic permeability and transport studies of $Li_{0.5-0.5x}Co_xFe_{2.5-0.5x}O_4$ spinel ferrite, Journal of Magnetism and Magnetic Materials,295, 2005, p. 28 – 36.

[5] A.A Pandit,S.S.More,R.G.Dorik and K.M.Jadhav, Structural and Magnetic properties of Co_{1+y} Sn_y Fe_{2-2y-x} Cr_xO₄ Ferrite System, Bull. Mater. sci. vol.26, No.5, 2003, pp.517-521,Indian Academy of Sciences,India.

[6] M.U.Islam, M.Ashraf Chaudhry, T,Abbas, Atif Abbas, K.A. Hashmi and Saima Khan, thermoelectric properties of CuTi substitute Ni – Zn ferrite, Journal of Research , Bahauddin Zakariya University, Pakistan, vol.14,No.2 ,2003, pp.241 – 245.

[7] M.A. Ahmed, A.Tawfik, M.K.El- Nimr, A.A.Hasab, Physical and Electrical Properties of Ni - Al ferrites, Journal of Material Science Letters 10,1991, p.549 – 551, Tanta Uni., Egypt.

[8] M.A. Ahmed, Electrical Properties of Co – Zn ferrite, phys. Stat. sol. (a) 111 – 567,1989, Tanta Uni., Egypt.

[9] H.Ismeal , M.K. El Nimir , A.M. Abou El Ata , M.A. Ahmed , A.A. Murakhowskii ,Dielectric behavior of hexaferrites Journal of Magnetic Materials 150

$BaCo_{2-x}Zn_xFe_{16}O_{27}$ (1995) 403-408.

[10] A.A.Sattar, H.M.EL-SAYED, K.M EL-Shokrofy and M.MEL- Tabey, Improvement of the Magnetic Properties of Mn-Ni- Zn Ferrite by the Non-magnetic Al³⁺-Ion Substitution, Journal of Applied Sciences5(1): 162-168, 2005, Ain Shams University, Cairo, Egypt.

[11] Standley K.J,Oxide Magnetic Material ,chrendon press, oxford 1972.

[12] M.L.Craus, V.Dobrea, S.Predeanu, C. Neculita, the influence of copper concentration on magnetic properties of same nanocrystalline $\text{Li}_x\text{Cu}_{1-2x}\text{Fe}_{2+x}O_4$ ferrites, Journal of Optoelectronics and Advanced Materials vol.4,No.2,June 2002,p.329 – 332, National Institute, Romania.

[13] A.Tawfik, S.A. Olofa, the diffusion coefficient of vacancies and jump length of electons in zinc doped manganese ferrite, Journal of Magnetism and Magnetic Materials 174,1997, 133 – 136, Tanta University, Egypt.

[14] أ. د. محمد أمين سليمان ، أ.د. احمد فؤاد باشا ، أ.د. شريف احمد خيري ، فيزياء الجوامد ، سلسلة الفكر العربي لمراجع العلوم الاساسية ، دار الفكر العربي ، 2005 .