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  ABSTRACT    
We present in this article a game of chance (Saint Petersburg Paradox) and 

generalize it on a probability space as an example of a previsible (predictable) process, 

from which we get a discrete stochastic integration (DSI). Then we define a martingale 𝑋 

and present it as a good integrator of a discrete stochastic integration ∫𝐶. 𝑑𝑋, which is 

called the martingale transform of 𝑋 by 𝐶 such that 𝐶 is a previsible process. 

After that we present the most important properties of the DSI, which include that the 

DSI is also a martingale , the theorem of stability for it, the definition of the covariation of 

two given martingales and the proof that the DSI is centered with a specific given variance. 

Finally, we define Doob-decomposition and the quadratic variation and present Itȏ-

formula as a certain sort of it. 

 

Keywords: Martingale, previsible (predictable) process, discrete stochastic 

integration, local bounded, stability, covariation, quadratic variation, centered, Doob-

decomposition, Itȏ-formula. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                                           
1
 Master of Science,  Syria- Lattakia,                



 سليمان                                                                                                        التكامل العشوائي المنقطع

164 

 2017( 6( العدد )39المجلد ) العلوم الأساسيةسلسلة   -مجلة جامعة تشرين للبحوث والدراسات العلمية 
Tishreen University Journal for Research and Scientific Studies - Basic Sciences Series Vol.  (39) No. (6) 2017 

 
 التكامل العشوائي المنقطع

 
 2بشرى سليمان

 
 (2017/ 12/  26قُبِل للنشر في  . 2017/  7/  19تاريخ الإيداع ) 

 
 ملخّص  

 
و  وقعمالي كمثال عن عملية قابلة للتعممها على فضاء احتنالة لعبة حظ )لعبة بيترسبورغ( و قدم في هذه المقن

قدمه كعنصر تفاضلي جيد للتكامل نل و نجاعرف المارتينبعد ذلك  التي من خلالها نحصل على تكامل عشوائي منقطع
 .وقعلة للتبويل المارتينجال بواسطة عملية قاالعشوائي المنقطع الذي يدعى تح

العشوائي المنقطع التي تتضمن بأن التكامل العشوائي المنقطع هو من قدم أهم خصائص التكامل نبعد ذلك 
جديد مارتينجال كما تشرح نظرية الاستقرار له و تعرف تباين مارتينجالين معطيين و تبين أن التكامل العشوائي متمركز 

 بتباين محدد معطى.
 محدد من تقسيم دوب . قدم صيغة العالم إتو كنوعنتقسيم دوب والتباين التربيعي و عرف نأخيراً 
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 Introduction: 
In this article we present some ideas about the theory of modern stochastic 

integration. The novelty is that we will define a martingale as a “ good integrator „ of the 

discrete stochastic integration, which we will talk about in detail. 

Firstly we present two examples about a previsible process, like games of chance 

(Petersburg game, Saint Petersburg Paradox), which leads us to a discrete stochastic 

integration (DSI). 

Secondly we explain the most important properties of the DSI. 

Thirdly we define Doob-decomposition and the quadratic variation and then present 

the discrete Itȏ-formula as a certain sort of it. 

The importance of this research and its aims: 
The expression 𝐶. 𝑋, the martingale transform of 𝑋 by 𝐶, is the discrete analouge of 

the stochastic integral ∫𝐶. 𝑑𝑋. 

The way of research and its materials: 
We used some scientific articles and some modern books about probability theory. 

1. Examples about a previsible process: 

1.1.  The first Example about a previsible process: 
We consider a game of chance in a casino, in which in every round, the stake which 

the player has chosen either is doubled repaid or get lost ( is lost ). 

This is like the case of Roulette, where the player for example, can choose “red „ and 

if he gets a red number, he will win his stake back doubled, otherwise he will lose it. 

There are 37 fields, of which 18 are red, 18 black and one is green ( the zero ). 

The chance to win should be then 𝑝 =
18

37
<
1

2
 . 

This game of chance is accomplished infinitely often independent behind each other. 

Definition 1: We can generalize this game on a probability space (𝛺,𝒜, 𝑝), such 

that 𝛺 = {−1,1}ℕ,𝒜 = (2{−1,1})
⨂ℕ

the power set of 𝛺 and the product measure is  

ℙ = ((1 − 𝑝). 𝛿−1 + 𝑝. 𝛿1)
⨂ℕ with 𝛿𝑎: 𝛽(ℝ)⏟  

𝐵𝑜𝑟𝑒𝑙 𝜎−𝐴𝑙𝑔𝑒𝑏𝑟𝑎

→ [0,1]; 𝑎𝜖ℝ such that: 

𝛿𝑎(𝐴) = {
1 ; 𝑎 ∈ 𝐴
0 ; 𝑎 ∉ 𝐴

 

We denote with: 𝐷𝑛: 𝛺 → {−1,1} ∶ 𝜔 → 𝐷𝑛(𝜔) = 𝜔𝑛 to the result of the 𝑛 − 𝑡ℎ 

round for every 𝑛 ∈ ℕ.(Projection on the 𝑛 − 𝑡ℎ component) then holds: 𝑝(𝐷𝑛 = 1) = 𝑝 

and 𝑝(𝐷𝑛 = −1) = 1 − 𝑝. If the player does the random stake 𝐶𝑖 in the 𝑖 − 𝑡ℎ round, the 

sum of the gainings after the 𝑛 − 𝑡ℎ round will be 𝑆𝑛 = ∑ 𝐶𝑖. 𝐷𝑖
𝑛
𝑖=1 . 

We suppose now, that the player follows the following strategy: 

1. The first stake in the first round is 𝐶1 = 1.  

2.  If the player wins, he will pay no more in the following games, that means: 

𝐶𝑛 = 0 for every 𝑛 ≥ 2, in the case of 𝐷1 = 1. 

3. If he loses, he will put the double stake in the second round, hence 𝐶2 = 2, 
in the case of 𝐷1 = −1. 

4. If he wins in the second round, he will pay no more starting from the third 

round. 

Otherwise, he will pay his stake doubled again in the third round and so on. 

So, we get as a strategy: 𝐶𝑛 = {
0 ; 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑖 ∈ {1,2, … . , 𝑛 − 1} 𝑤𝑖𝑡ℎ 𝐷𝑖 = 1

2𝑛−1 ;       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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You note that 𝐶𝑛 depends only on 𝐷1, 𝐷2, ………… . . , 𝐷𝑛−1, hence, it is measurable in 

respect to 𝜎(𝐷1, 𝐷2, ………… . . , 𝐷𝑛−1). 

1.2. Example: Binary model: 

1.3. Definition 2: A stochastic process 𝑋0, 𝑋1, ……… . . , 𝑋𝑇 is called binary 

model, if there are random variables: 𝐷1, 𝐷2, ………… . . , 𝐷𝑇 with values in {−1,1} and 

functions : 

𝑓𝑛: ℝ
𝑛−1 × {−1,1} → ℝ for 𝑛 = 1,2, …………… , 𝑇. (𝑇 ∈ ℕ a fixed point of time), 

such that: 𝑋0 = 𝑥0, and 𝑋𝑛 = 𝑓𝑛(𝑋1, 𝑋2, …… . , 𝑋𝑛−1, 𝐷𝑛) for every 𝑛 = 1,2, …………… , 𝑇 

with ℱ = 𝜎(𝑋). We denote the filtration, which is generated by the process 𝑋 =
(𝑋0, 𝑋1, ……… . . , 𝑋𝑇) by ℱ = 𝜎(𝑋). We note that 𝑋𝑛 depends only on 𝑋1, 𝑋2, …… . , 𝑋𝑛−1 

and 𝐷𝑛 and does not depend on the full information of the values 𝐷1, 𝐷2, ………… . . , 𝐷𝑛.  

The Petersburg game and the binary model are two examples of a predictable 

process. 

Definition 3: Previsible (Predictable) process: 
A stochastic process 𝐶 = (𝐶𝑛; 𝑛 ∈ ℕ) is called predictable with respect tot he 

filtration ℱ = (ℱ𝑛; 𝑛 ∈ ℕ); if 𝐶0 is a constant and for every 𝑛 ∈ ℕ holds: 𝐶𝑛 is 

ℱ𝑛−1 −measurable.[1] 

Discussion and results: 
To the petersburg game: We continue the last example. We put: 

 𝑋𝑛 ≔ 𝐷1 + 𝐷2 +⋯……… . . + 𝐷𝑛 for 𝑛 ∈ ℕ, then 𝑋 = (𝑋0, 𝑋1, …… . ) or 

 𝑋 = (𝑋𝑛)𝑛∈ℕ is a martingale. 

The strategy of the game: 𝐶𝑛 = {
2𝑛−1 ; 𝑖𝑓 𝐷1 = 𝐷2 = ⋯ = 𝐷𝑛−1 = −1
0    ;                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

and 𝐶0 = 1 is predictable and local bounded.  

Suppose that 𝑆 = (𝑆0, 𝑆1, ……… ) or [ 𝑆 = (𝑆𝑛)𝑛∈ℕ] is a sequence of random 

variables such that: 𝑆𝑛 ≔ ∑ 𝐶𝑖. 𝐷𝑖
𝑛
𝑖=1 = (𝐶. 𝑋)𝑛 is the gaining after 𝑛 rounds. 

Then 𝑆 = (𝑆0, 𝑆1, ……… ) is a martingale. [1] 

But, what is a martingale? 

Definition 4: A process 𝑋 = (𝑋𝑛)𝑛∈ℕ is called a martingale with respect to the 

natural filtration (ℱ𝑛)𝑛∈ℕ (ℱ𝑛 = 𝜎(𝑋0, 𝑋1, ……… , 𝑋𝑛) 𝑎𝑛𝑑 ℱ1 ⊂ ℱ2 ⊂ ℱ3 ⊂ ⋯ ⊂ ℱ𝑛 ⊂
⋯ ⊂ ℱ) 

i. If 𝑋 is ℱ −adapted 

ii. 𝐸(|𝑋𝑛|) < ∞ ; ∀𝑛 ∈ ℕ 

iii. 𝐸(𝑋𝑛│ℱ𝑛−1) = 𝑋𝑛−1 ; 𝑎𝑙𝑚𝑜𝑠𝑡 𝑠𝑢𝑟𝑒𝑙𝑦 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑛 ∈ ℕ
∗  

Now, 𝑆 which is mentioned above is an example for our topic (The Discrete 

Stochastic Integration).[1],[3] 

Definition 5: Suppose that 𝑋 = (𝑋𝑛)𝑛∈ℕ is a real, ℱ −adapted process and 

(𝐶𝑛)𝑛∈ℕ is real-valued und ℱ −predictable. 

We define the stochastic process 𝐶. 𝑋 as: (𝐶. 𝑋)𝑛 ≔ ∑ 𝐶𝑚. (𝑋𝑚 − 𝑋𝑚−1)
𝑛
𝑚=1  for 

𝑛 ∈ ℕ and call the process 𝐶. 𝑋 the discrete stochastic integral of 𝐶 with respect to 𝑋. 

If 𝑋 is a martingale we will call 𝐶. 𝑋 the martingale transform of 𝑋too.[1],[3],[5] 

Remark: Under the stochastic integral ∫𝐶. 𝑑𝑋 from 𝐶 to 𝑋 we understand the 

discrete martingale 𝐶. 𝑋, which is defined as above: 
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(𝐶. 𝑋)𝑛 = ∑ 𝐶𝑚. (𝑋𝑚 − 𝑋𝑚−1) = ∑ 𝐶𝑚. (∆𝑚𝑋)" = ∫ 𝐶⏟
𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑛𝑑

. 𝑑𝑋⏟
𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑜𝑟

𝑛

0
𝑛
𝑚=1

𝑛
𝑚=1 " 

( as analogue) such that ∆𝑚𝑋 = 𝑋𝑚 − 𝑋𝑚−1. Martingales act here as good integrators for a 

discrete stochastic integration. [3] 

Properties of the DSI: 

Theorem 1:  ( A fundamental principle : You can
,
t beat the system!) 

If 𝑋 is a martingale and 𝐶 local bounded ( it means, every 𝐶𝑛 is bounded,  

∃𝐾𝑛 ∈ [0,∞[ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑤𝑖𝑡ℎ |𝐶𝑛(𝜔)| ≤ 𝐾𝑛;  ∀𝜔), then 𝐶. 𝑋 is a martingale. 

Proof: We must show the following three conditions: 

i. (𝐶. 𝑋)𝑛 is ℱ𝑛 −measurable, it means (𝐶. 𝑋) is ℱ −adapted. 

ii. 𝐶. 𝑋 is in 𝐿1, it means integrable. 

iii. 𝐸((𝐶. 𝑋)𝑛+1│ℱ𝑛) = (𝐶. 𝑋)𝑛 almost surely for every 𝑛 ∈ ℕ. 

 i : We want to show that if 𝑋 is ℱ −measurable, then 𝐶. 𝑋 will be ℱ −measurable 

too. (𝐶. 𝑋)𝑛 = ∑ 𝐶𝑚(𝑋𝑚 − 𝑋𝑚−1)
𝑛
𝑚=1  is a function of 𝑋0, 𝑋1, … , 𝑋𝑛 and therefore (𝐶. 𝑋)𝑛 

is ℱ𝑛−1 −measurable. 

 ii : (𝐶. 𝑋)𝑛 = ∑ 𝐶𝑚⏟
𝑏𝑜𝑢𝑛𝑑𝑒𝑑

. (𝑋𝑚 − 𝑋𝑚−1)⏟        
𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑏𝑙𝑒⏟              

𝑡ℎ𝑖𝑠 𝑟𝑒𝑚𝑎𝑖𝑛𝑠 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑏𝑙𝑒

𝑛
𝑚=1  with:  

𝐸(|(𝐶. 𝑋)𝑛|) ≤ 𝐸(∑ |𝐶𝑚|. |𝑋𝑚 − 𝑋𝑚−1|
𝑛
𝑚=1 ) ≤ sup𝑚(𝐾𝑚). 2. ∑ 𝐸(|𝑋𝑚|) < ∞,

𝑛
𝑚=1  

hence: 𝐶. 𝑋 ∈ 𝐿1. 

 iii : We want to show that: 𝐸((𝐶. 𝑋)𝑛+1│ℱ𝑛) = (𝐶. 𝑋)𝑛 and for this task it is enough 

to write: 𝐸((𝐶. 𝑋)𝑛+1 − (𝐶. 𝑋)𝑛│ℱ𝑛) = 

𝐸 (∑ 𝐶𝑚(𝑋𝑚 − 𝑋𝑚−1)

𝑛+1

𝑚=1

− ∑ 𝐶𝑚(𝑋𝑚 − 𝑋𝑚−1)│ℱ𝑛

𝑛

𝑚=1

) = 

𝐸(𝐶𝑛+1(𝑋𝑛+1 − 𝑋𝑛)│ℱ𝑛) = 𝐶𝑛+1. 𝐸 ((𝑋𝑛+1 − 𝑋𝑛)│ℱ𝑛)⏟            
=0 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑋 𝑖𝑠 𝑎 𝑚𝑎𝑟𝑡𝑖𝑛𝑔𝑎𝑙𝑒

= 0, [3] 

 

Theorem 2: Theorem of stability for a stochastic integral 
Suppose that (𝑋𝑛)𝑛∈ℕ is an ℱ −adapted, real stochastic process with: 𝐸(|𝑋0|) < ∞, 

then: 

𝑋 is a martingale if and only if the stochastic integral 𝐶. 𝑋 is a martingale, for every 

local bounded predictable process 𝐶. 

Proof: For the proof, it is enough to show that if 𝐶. 𝑋 is a martingale, then 𝑋 will be a 

martingale too. It means:We have to show that: 𝐸(𝑋𝑛+1│ℱ𝑛) = 𝑋𝑛. 

Either 𝐶𝑛+1 = 0; ∀𝑛 ∈ ℕ, it means that (𝐶𝑛)𝑛∈ℕ is a deterministic process and this 

process is not interesting here. Or 𝐸 ((𝑋𝑛+1 − 𝑋𝑛)│ℱ𝑛) = 0 ⟹  𝐸 ((𝑋𝑛+1)│ℱ𝑛) =

𝐸(𝑋𝑛|ℱ𝑛) = 𝑋𝑛, it means 𝑋 is a martingale. [1] 

Definition 6: The Covariation: 
Suppose that 𝑀1, 𝑀2 two martingales, then [𝑀1, 𝑀2]𝑛 is called the covariation of 

𝑀1and 𝑀2, such that: [𝑀1, 𝑀2]𝑛 ≔ ∑ ∆𝑚(𝑀1). ∆𝑚(𝑀2)
𝑛
𝑚=1 . 

Theorem 3: 
Suppose that 𝑀1, 𝑀2 are two real-valued discrete martingales and 𝐶, 𝐶′are two 

predictable real-valued processes then: 

i. 𝐶. (𝐶′. 𝑀1) = (𝐶. 𝐶
′).𝑀1 
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ii. [𝐶.𝑀1, 𝐶
′. 𝑀2]𝑛 ≔ (𝐶. 𝐶′). [𝑀1, 𝑀2]𝑛 

Proof:  i : LS:=𝐶. (𝐶′. 𝑀1)𝑛 = ∑ 𝐶𝑚. ∆𝑚(𝐶
′. 𝑀1) = ∑ 𝐶𝑚. [(𝐶

′. 𝑀1)𝑚 −
𝑛
𝑚=1

𝑛
𝑚=1

(𝐶′. 𝑀1)𝑚−1] = ∑ 𝐶𝑚. (𝐶𝑚
′ . (𝑀1)𝑚) = ∑ 𝐶𝑚. 𝐶𝑚

′ (𝑀1)𝑚 = (𝐶. 𝐶
′). (𝑀1)𝑛

𝑛
𝑚=1

𝑛
𝑚=1 =:RS 

 ii we write: 

[𝐶.𝑀1, 𝐶
′. 𝑀2]𝑛 = ∑ ∆𝑚(𝐶.𝑀1). ∆𝑚(𝐶

′. 𝑀2) = ∑ 𝐶𝑚. ∆𝑚
𝑛
𝑚=1

𝑛
𝑚=1 (𝑀1). 𝐶𝑚

′ . ∆𝑚(𝑀2) = 

= ∑ 𝐶𝑚.

𝑛

𝑚=1

𝐶𝑚
′ . ∆𝑚(𝑀1). ∆𝑚(𝑀2) =∑ (𝐶. 𝐶′)𝑚

𝑛

𝑚=1
∆𝑚(𝑀1). ∆𝑚(𝑀2) = 

= ∑(𝐶. 𝐶′)𝑚

𝑛

𝑚=1

. ∆𝑚[𝑀1, 𝑀2] = (𝐶. 𝐶
′). [𝑀1, 𝑀2]𝑛 

Theorem 4: The discrete stochastic integral 𝑌𝑛 = (𝐶. 𝑋)𝑛 with a martingale 𝑋 and 

a predictable process 𝐶 is centered and 𝑉𝑎𝑟(𝑌𝑛) = ∑ 𝐸((𝐶𝑚)
2. (𝑋𝑚 − 𝑋𝑚−1)

2)𝑛
𝑚=1 . 

Proof: 

𝐸(𝑌𝑛) = 𝐸(∑ 𝐶𝑚. (𝑋𝑚 − 𝑋𝑚−1)
𝑛
𝑚=1 ) =

∑ 𝐸(𝐶𝑚. ∆𝑚𝑋) = ∑ 𝐸 (𝐸(𝐶𝑚. ∆𝑚𝑋│ℱ𝑚−1)) = ∑ 𝐸(𝐶𝑚. 0) = 0
𝑛
𝑚=1

𝑛
𝑚=1

𝑛
𝑚=1 , because 𝑋 is 

a martingale. 

𝑉𝑎𝑟(𝑌𝑛) = 𝑉𝑎𝑟 (∑ 𝐶𝑚. (𝑋𝑚 − 𝑋𝑚−1)

𝑛

𝑚=1

) = 𝐸 ((𝑌𝑛 − 𝐸(𝑌𝑛))
2
) = 𝐸((𝑌𝑛 − 0)

2) = 

= 𝐸((∑ 𝐶𝑚. (𝑋𝑚 − 𝑋𝑚−1)

𝑛

𝑚=1

)

2

) = 

𝐸 (∑(𝐶𝑚)
2

𝑛

𝑚=1

. (𝑋𝑚 − 𝑋𝑚−1)
2 + ∑ 𝐶𝑚. 𝐶𝑘. (𝑋𝑚 − 𝑋𝑚−1). (𝑋𝑘 − 𝑋𝑘−1)

𝑚≠𝑘

) 

= 𝐸 (∑(𝐶𝑚)
2

𝑛

𝑚=1

. (𝑋𝑚 − 𝑋𝑚−1)
2 + 2.∑ ∑ 𝐶𝑚. 𝐶𝑘. (𝑋𝑚 − 𝑋𝑚−1). (𝑋𝑘 − 𝑋𝑘−1)

1≤𝑚<𝑘≤𝑛

) 

Now, we can take the following decomposition:  

0 < 𝑚 − 1 < 𝑚 < 𝑘 − 1 < 𝑘 ;𝑚, 𝑘 ∈ ℕ 

and suppose that: 𝐼𝑘 = ∑ 𝐶𝑚. 𝐶𝑘. (𝑋𝑚 − 𝑋𝑚−1). (𝑋𝑘 − 𝑋𝑘−1)
𝑘−1
𝑚=1  ⟹ 

𝑉𝑎𝑟(𝑌𝑛) = 𝐸 (∑(𝐶𝑚)
2

𝑛

𝑚=1

. (𝑋𝑚 − 𝑋𝑚−1)
2) + 2.∑𝐸(𝐼𝑘)

𝑚

𝑘=2

……… .∗∗ 

𝐸(𝐼𝑘) = 𝐸 (𝐸(𝐼𝑘│ℱ𝑘−1)) = ∑ 𝐸 (𝐸(𝐶𝑚. 𝐶𝑘. (𝑋𝑚 − 𝑋𝑚−1). (𝑋𝑘 − 𝑋𝑘−1)│ℱ𝑘−1))

𝑘−1

𝑚=1

 

= ∑ 𝐸(𝐶𝑚. 𝐶𝑘. (𝑋𝑚 − 𝑋𝑚−1). 𝐸 ((𝑋𝑘 − 𝑋𝑘−1)│ℱ𝑘−1)⏟              
=0

)

𝑘−1

𝑚=1

= 0 

𝑉𝑎𝑟(𝑌𝑛) = 𝐸 (∑(𝐶𝑚)
2

𝑛

𝑚=1

. (𝑋𝑚 − 𝑋𝑚−1)
2) 

Remark: If we have a simple symmetrical random walk, then it holds: 

 (𝑋𝑚 − 𝑋𝑚−1)
2 = 1 ⟹ 

𝑉𝑎𝑟(𝑌𝑛) = 𝐸(∑ (𝐶𝑚)
2𝑛

𝑚=1 ) = ∑ 𝐸(𝐶𝑚
2 )𝑛

𝑚=1 . 
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3. The discrete Itȏ-formula: 

3.1. Doob-decomposition and quadratic variation: 
Suppose that 𝑋 = (𝑋𝑛)𝑛∈ℕ is an ℱ −adapted process with 𝐸(|𝑋𝑛|) < ∞ for every 

 𝑛 ∈ ℕ. 

We want to decompose  𝑋 into a sum of a martingale and a predictable process. In 

addition to, we define 𝑀𝑛 for every 𝑛 ∈ ℕ as the following: 

 𝑀𝑛 ≔ 𝑋0 + ∑ (𝑋𝑘 − 𝐸(𝑋𝑘│ℱ𝑘−1))
𝑛
𝑘=1 , 

𝐶𝑛 ≔ ∑ (𝐸(𝑋𝑘│ℱ𝑘−1) − 𝑋𝑘−1)
𝑛
𝑘=1 . It is obviously that 𝑋𝑛 = 𝑀𝑛 + 𝐶𝑛 by 

construction such that 𝐶 is predictable with 𝐶0 = 0 and 𝑀 is a martingale because: 

𝐸(𝑀𝑛 −𝑀𝑛−1│ℱ𝑛−1) = 𝐸(𝑋𝑛 − 𝐸(𝑋𝑛│ℱ𝑛−1)│ℱ𝑛−1) = 𝐸(𝑋𝑛│ℱ𝑛−1) −

𝐸(𝐸(𝑋𝑛│ℱ𝑛−1)│ℱ𝑛−1) = 𝐸(𝑋𝑛│ℱ𝑛−1) − 𝐸(𝑋𝑛│ℱ𝑛−1) = 0, [3] 

Theorem 5: ( Doob-decomposition ): 
Suppose that 𝑋 = (𝑋𝑛)𝑛∈ℕ is an ℱ −adapted, integrable process. Then, it exists a 

unique decomposition 𝑋 = 𝑀 + 𝐶, such that 𝐶 is predictable with 𝐶0 = 0 and 𝑀 is a 

martingale. 

This representation of 𝑋 is called Doob-decomposition.[1],[5]. 

Definition 7: Suppose that 𝑋 = (𝑋𝑛)𝑛∈ℕ is a quadratic integrable ℱ −martingale. 

The unique specific predictable process 𝐶, from which we get the  martingale (𝑋𝑛
2 −

𝐶𝑛)𝑛∈ℕ 

, is called the quadratic variation process of 𝑋 and is denoted by the formula: 
(〈𝑋〉𝑛)𝑛∈ℕ ≔ 𝐶. [1]. 

Example: Suppose that 𝑋1, 𝑋2, ……… are independent, quadratic integrable 

centered random variables. Then a quadratic integrable martingale is defined by: 𝑀𝑛 =
𝑋1 +⋯+ 𝑋𝑛 with the quadratic variation: 〈𝑀〉𝑛 = ∑ 𝐸(𝑋𝑖

2)𝑛
𝑖=1 , then: 

𝐶𝑛 = ∑ 𝐸(𝑋𝑖
2│𝑋1, 𝑋2, … . , 𝑋𝑖−1) = ∑ 𝐸(𝑋𝑖

2)𝑛
𝑖=1

𝑛
𝑖=1 . We note that, it is not sufficient for this 

simple representation of 〈𝑀〉, that 𝑋1, 𝑋2, ……… are uncorrelated.[1] 

3.2. The discrete Itȏ-formula:  

Example: Suppose that (𝑋𝑛)𝑛∈ℕ is the one-dimensional symmetrical simple 

random walk, 𝑋𝑛 ≔ ∑ 𝑅𝑖
𝑛
𝑖=1  for every 𝑛 ∈ ℕ, such that: (𝑅𝑖)𝑖∈ℕ independent identically 

distributed random variables with: 𝑃(𝑅𝑖 = 1) = 1 − 𝑃(𝑅𝑖 = −1) =
1

2
 . 

Obviously, 𝑋 is a martingale, hence |𝑋| is a submartingale 

(𝑋𝑛 ≤ 𝐸(𝑋𝑛+1│ℱ𝑛)) ; 𝑛 ∈ ℕ 

Suppose that |𝑋| = 𝑀 + 𝐶 the Doob-decomposition of |𝑋|, then is:  

𝐶𝑛 = ∑ (𝐸(|𝑋𝑖|│ℱ𝑖−1) − |𝑋𝑖−1|)
𝑛
𝑖=1 . Now, |𝑋𝑖| = {

|𝑋𝑖−1| + 𝑅𝑖 ; 𝑖𝑓 𝑋𝑖−1 > 0
|𝑋𝑖−1| − 𝑅𝑖 ; 𝑋𝑖−1 < 0
1           ;    𝑋𝑖−1 = 0

 

We want to generalize this example. Obviously, we need (except in the last formula), 

that 𝑋 is a random walk, but the important thing here that the difference 

 ∆𝑛𝑋 ≔ 𝑋𝑛 − 𝑋𝑛−1 can only take the values −1,1. 

Now, suppose that 𝑋 is a martingale with |𝑋𝑛 − 𝑋𝑛−1| = 1 almost surely for every 

𝑛 ∈ ℕ and with 𝑋0 = 𝑥0 ∈ 𝕫 almost surely and suppose that 𝑓: 𝕫 → ℝ is an arbitrary 

function, then 𝑌 ≔ (𝑓(𝑋𝑛))𝑛∈ℕ is an integrable adapted process, because it holds: 
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For every 𝑛 ∈ ℕ |𝑓(𝑋𝑛)| ≤ max𝑥∈{𝑥0−𝑛,…..,𝑥0+𝑛}|𝑓(𝑥)|. To identify the Doob-

decomposition of 𝑌, we have to define the first and the second discrete derivation of 𝑓. 

According to the main theorem of differential and integral calculus we can write: 

𝑓(𝑥) − 𝑓(0) = ∫ 𝑓′(𝑦). 𝑑𝑦
𝑥

0
  [1],[2],but what happens when 𝑋 is a martingale? 

Theorem 6: Suppose that 𝑋 is a one-dimensional symmetrical random walk and is 

defined as in the last example. Suppose that: 𝑓′(𝑥) ≔
𝑓(𝑥+1)−𝑓(𝑥−1)

2
 ; 𝑥 ∈ 𝕫 and  

𝑓′′(𝑥) ≔ 𝑓(𝑥 + 1) + 𝑓(𝑥 − 1) − 2. 𝑓(𝑥) ; 𝑥 ∈ 𝕫. We put more 𝐹𝑛
′ ≔ 𝑓′(𝑋𝑛−1) and 

𝐹𝑛
′′ ≔ 𝑓′′(𝑋𝑛−1), then the Itȏ-formula is:  

𝑓(𝑋𝑛) = 𝑓(𝑋0) + (𝐹
′. 𝑋)𝑛 +

1

2
 (𝐹′′. 〈𝑋〉)𝑛; 𝑛 ∈ ℕ 

Proof: By distinguishing between the situations 𝑋𝑛 = 𝑋𝑛−1 − 1 and 𝑋𝑛 = 𝑋𝑛−1 + 1, 

we see that for every 𝑛 ∈ ℕ: 𝑓(𝑋𝑛) − 𝑓(𝑋𝑛−1) =
𝑓(𝑋𝑛−1+1)−𝑓(𝑋𝑛−1−1)

2
. (𝑋𝑛 − 𝑋𝑛−1) +

1

2
. 𝑓(𝑋𝑛−1 − 1) +

1

2
. 𝑓(𝑋𝑛−1 + 1) − 𝑓(𝑋𝑛−1) = 𝑓

′(𝑋𝑛−1). (𝑋𝑛 − 𝑋𝑛−1) +
1

2
. 𝑓′′(𝑋𝑛−1) 

= 𝐹𝑛
′. (𝑋𝑛 − 𝑋𝑛−1) +

1

2
. 𝐹𝑛
′′. (𝑋𝑛 − 𝑋𝑛−1)

2. In total we get the discrete Itȏ-formula: 

𝑓(𝑋𝑛) = 𝑓(𝑥0) +∑𝑓′(𝑋𝑖−1). (𝑋𝑖 − 𝑋𝑖−1)

𝑛

𝑖=1

+∑
1

2
. 𝑓′′(𝑋𝑖−1) =

𝑛

𝑖=1

 

 

= 𝑓(𝑥0) + (𝐹
′. 𝑋)𝑛 + ∑

1

2
. 𝐹𝑖
′′ =𝑛

𝑖=1 𝑓(𝑥0) + (𝐹
′. 𝑋)𝑛⏟    
𝐷𝑆𝐼

+
1

2
. (𝐹′′. 〈𝑋〉)𝑛    [2] 

Remark: 𝑀𝑛 = 𝑓(𝑥0) + (𝐹
′. 𝑋)𝑛 is a martingale, because 𝐹′is predictable  

(|𝐹𝑛
′| ≤ max

𝑥∈{𝑥0−𝑛,…..,𝑥0+𝑛}
𝑓′(𝑥)) 

and 𝐶𝑛 ≔ ∑
1

2
. 𝐹𝑖
′′ ; 𝑛 ∈ ℕ𝑛

𝑖=1  is predictable. Hence, 𝑓(𝑥) ≔ (𝑓(𝑥𝑛))𝑛∈ℕ = 𝑀 + 𝐶 

and that is exactly the Doob-decomposition of 𝑓(𝑥) . 

Example: 𝑓(𝑥) = 𝑥2. Here is: 𝑓′(𝑥) =
𝑓(𝑥+1)−𝑓(𝑥−1)

2
=
(𝑥+1)2−(𝑥−1)2

2
= 2𝑥 and  

 𝑓′′(𝑥) = (𝑥 − 1)2 + (𝑥 + 1)2 − 2𝑥2 = 2, 𝑥0 = 2 ⟹ 𝑓(𝑥0) = 𝑓(0) = 0 

〈𝑋〉𝑛 ≔ ∑(∆𝑚𝑋)
2

𝑛

𝑚=1

= ∑ 1 = 𝑛

𝑛

𝑚=1

 

Suppose that 𝑋𝑛 = ∑ 𝑅𝑖
𝑛
𝑖=1 . We know already, that the sum of independent centered 

random variables is a martingale, 𝑥0 = 0, 𝑓(𝑋𝑛) =? 

𝑓(𝑋𝑛) = 0 +∑𝑓′(𝑋𝑖−1). (𝑋𝑖 − 𝑋𝑖−1)

𝑛

𝑖=1

+∑
1

2
. 𝑓′′(𝑥𝑖−1) =

𝑛

𝑖=1

 

=∑2.𝑋𝑖−1. 𝑅𝑖

𝑛

𝑖=1

+∑
1

2
. 2 = 2.∑(∑𝑅𝑗

𝑖−1

𝑗=1

) . 𝑅𝑖

𝑛

𝑖=1⏟            

𝐷𝑆𝐼=(∑ 𝑅𝑖
𝑛
𝑖=1 )

2

+ 𝑛

𝑛

𝑖=1

 

because  ∑ 𝑅𝑗
𝑖−1
𝑗=1  is  ℱ𝑖−1 −measurable. 
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Conclusions and recommendations:  
This research enables us to present martingales as good integrators of a discrete 

stochastic integration and presents five important properties of the DSI through five 

theorems, which are precisely proved. But the question now is: 

What happens when our process is continuous? 

Can we say the same things about  stochastic integral like 𝐶. 𝑋 when 𝑋is a 

continuous martingale. 

I hope that you can continue the study in continuous times. 
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