2018 (4) العدد (40) العدمية – سلسلة العلوم الأساسية المجلد (40) العدد (4) تتمرين للبحوث والدراسات العلمية – سلسلة العلوم الأساسية المجلد (40) العدد (4) Tishreen University Journal for Research and Scientific Studies - Basic Sciences Series Vol. (40) No. (4) 2018

دراسة أثر إشابة السيليكا النقية على منحنى معامل التبدد المادي في ليف بصري

الدكتور نظير ديوب *

(تاريخ الإيداع 19 / 4 / 2018. قُبِل للنشر في 15 / 7 /2018)

🗆 ملخّص 🗆

يهدف البحث إلى دراسة إمكانيات الحصول على مواد ذات تبدد مادي مزاح نحو الأطوال الموجية الأعلى والتي تقع ضمن النافذة C-Band المستخدمة حالياً في أنظمة الاتصالات بالألياف البصرية. يتم ذلك عن طريق إشابة مادة السيليكا النقية SiO₂ بمواد مختلفة وينسب مختلفة،حيث نقوم بإيجاد قرائن انكسار مادة اللب في ليف بصري ودراسة تغير هذه القرائن بتابعية الطول الموجي للضوء انطلاقاً من ثوابت سيلمر التي تم الحصول عليها من برنامج OptiFiber. بعد ذلك قمنا بحساب معامل التبدد المادي M لكل من المواد المدروسة، بكتابة برنامج ماتلاب خاص بهذه الدراسة وبالتالي دراسة تغير التبدد المادي لهذه المواد بتابعية طول الموجة.

الكلمات المفتاحية: ليف بصري– التبدد المادي D_M– معادلة سيلمر – سيليكا مشابة.

أستاذ مساعد _ قسم الفيزياء _ كلية العلوم _ جامعة تشرين _ اللاذقية _ سورية.

2018 (4) العدد (40) العدد العلمية – سلسلة العلوم الأساسية المجلد (40) العدد (4) العدد Tishreen University Journal for Research and Scientific Studies - Basic Sciences Series Vol. (40) No. (4) 2018

Study the effect of pure silica alloy on the curve of the physical dispersion coefficient in optical fiber

Dr.Nazir Dayoub^{*}

(Received 19 / 4 / 2018. Accepted 15 / 7 /2018)

\Box ABSTRACT \Box

The aim of this study is to study the possibilities of obtaining materials with a material shift to the higher wavelengths that fall within the C-Band window currently used in fiber optic communication systems. This is done by mixing pure SiO_2 with different materials and different percentages. We find the evidence of refraction of the core material in an optical fiber and study the change of these clues by sequential wavelength of light from the solimer constants obtained from the OptiFiber program. We then calculated the physical dispersion factor D_M for each of the studied materials by writing a special matlab program for this study and thus studying the change in the physical dispersion of these materials by the sequential wave length.

Key words: optical fiber - physical dispersion DM - Selimer equation - silica is similar.

^{*} Associate Professor- Department of Physics- Faculty of Sciences- Tishreen University -Lattakia -Syria.

مقدمة:

تستخدم السيليكا النقية في الصناعات الضوئية والمختبرات البحثية في جوانب مختلفة بسبب ما تتمتع به من خصائص متنوعة ملائمة فيزيائية وكيميائية. حالياً وبسبب التطور في تتقية السيليكا النقية أصبح بالإمكان الحصول على SiO₂ بمستويات عالية النقاوة. تعتبر السيليكا أساس تصنيع الألياف البصرية والتي بدورها تشكل عصب نقل المعلومات في العصر الحديث[1]، لذلك ومن أجل الحصول على بنية ليف بصري جيد الإرسال: عند الحديث عن مادة السيليكا وجب دراسة آلية النبدد المادي كمؤثر يحد من جودة نقل الإشارة[4,3,2].

تفترض معظم الدراسات النظرية أن المنابع الضوئية تصدر ضوء بطول موجي وحيد (أي تردد وحيد). إن هذا ليس بصحيح أبدا، فالمنابع الحقيقية تنتج إشعاعا ضمن مجال من أطوال الموجة وهذا المدى هو عرض خط المنبع أو العرض الطيفي. وكلما كان عرض الخط أصغر كان المنبع أكثر تماسكاً. يبث المنبع المتماسك بشكل كامل ضوءاً بطول موجة وحيد وهكذا يكون له عرض خط صفري أحادي اللون تماماً.

ترتبط سرعة الموجة مع قرينة الانكسار بالمعادلة c/n = c/n، لكن قرينة الانكسار تتغير بتغير طول الموجة. كما في الزجاج المستعمل في الألياف البصرية. لذلك تتغير سرعة الموجة أيضاً مع تغير طولها. تطلق كلمة – تبديد – على خاصية تغير السرعة مع تغير طول الموجة. فعندما يكون تغير السرعة ناتجاً عن خواص المادة تدعى النتيجة تبديد المادة.

كما يمكن ملاحظة التبدد في الزجاج بسهولة عندما يحلل موشور زجاجي الضوء الأبيض إلى ألوانه الأساسية كما في الشكل(1)توضح هذه التجربة اعتماداً على تابعية قرينة انكسار الزجاج لطول الموجة. وبموجب قانون سنل ديكارت تتحرف الأشعة الضوئية الواردة فتتحرف الألوان المختلفة بزوايا مختلفة، لأن قرينة الانكسار مختلفة لكل لون [5].

الشكل(1) تبدد الضوء الأبيض عند سقوطه على موشور

تؤدي إشابة (SiO₂) بكمية صغيرة من مواد أخرى مثل أوكسيد الجرمانيوم (GeO₂) إلى إزاحة طفيفة لمنحنيات قرينة الانكسار [7،6]. لذلك نعرف معادلة سيلمر التي تعطينا قرينة الانكسار الموافقة لكل طول موجي ينتقل عبر المادة وفق العلاقة [8–10] التالية:

$$n(\lambda) = \sqrt{1 + \sum_{i=1}^{3} A_i \cdot \frac{\lambda^2}{\lambda^2 - \lambda_i^2}} \qquad (1)$$

وبما أن لب الليف يصنع من الزجاج. وبالاعتماد على معادلة سيلمير نعبر عن معامل النبدد المادي بدلالة المشتق الثاني لقرينة الانكسار وفق العلاقة التالية[12,11]:

$$D_M = \frac{\lambda}{c} \frac{d^2 n(\lambda)}{d\lambda^2} \tag{2}$$

ديوب

أهمية البحث وأهدافه: أهمية البحث: تكمن أهمية البحث في كونه يعمل على الحصول على مواد ذات تبدد مادي مزاح عن طريق الإشابة. هدف البحث: دراسة إمكانية إزاحة منحنى التبدد المادي باتجاه الأطوال الموجية ضمن النافذة C-Band المستخدمة حاليا في أنظمة الاتصالات بالألياف البصرية. طرائق البحث ومواده: 1- دراسة نظرية لألية التبدد المادى. 2– مادة الزجاج (السيليكا): Silica $3\%B_2O_3$ -doped .1%Fluorine-doped silica,Pure .9.1% P₂O₅-doped silica 3.1% GeO₂-doped silica silica 3- إيجاد ثوابت معادلة سيلميرللسيليكا باستخدام المحاكى OptiFiber. 4-استخدام برنامج ماتلاب لإيجاد معامل التبدد المادي.

النتائج والمناقشة:

1-إيجاد ثوابت معادلة سيلمر (Selimer equation):

بسبب تابعية قرينة انكسار المادة للطول الموجي المنتشر ضمنها، قمنا بإيجاد قرينة انكسار مادة اللب من معادلة سيلمر من أجل مجموعة من المواد باستخدام برنامج OptiFiberالذي يعطينا ثوابت سيلمر لمادة السيليكا المكونة للب الليف وقمنا بتنظيمها وفق الجدول التالي:

$n^{2}(\lambda) - 1 = \frac{A_{1}\lambda^{2}}{\lambda^{2} - \lambda_{1}^{2}} + \frac{A_{2}\lambda^{2}}{\lambda^{2} - \lambda_{2}^{2}} + \frac{A_{3}\lambda^{2}}{\lambda^{2} - \lambda_{3}^{2}}$								
الاشابة (mol%)	<i>A</i> ₁	<i>A</i> ₂	<i>A</i> ₃	λ ₁	λ_2	λ_3		
Pure SiO2	0.6961663	0.4079426	0.897479	0.0684043	0.1162414	9.896161		
Fluorine (1%)	0.6935408	0.4052977	0.9111432	0.0717021	0.1256396	9.896154		
$B_2O_3(3\%)$	0.69325	0.3972	0.86008	0.06723987	0.11714009	9.7760984		
GeO ₂ (3.1%)	0.7028554	0.4146307	0.897454	0.0727723	0.11430853	9.8961609		
$P_2O_5(9.1\%)$	0.69579	0.452497	0.712513	0.061568	0.119921	8.656641		

الجدول (1): معادلة سيلمر وثوابتها من أجل السيليكا ومجموعة المواد المستخدمة في عملية الإشابة.

تم كتابة برامج ماتلاب لمعادلة سبلمر من أجل مجموعة المواد المستخدمة ويبين النص التالي نص البرنامج المكتوب $:n(\lambda)$ [Lambda] clear %calculate materials n vector and material dispersion %wave length vector y vector=1.2:0.02:2.4; %Pure SIO2 A1 A2 AЗ Υ1 Υ2 Y3 constants array=[0.6961663,0.4079426,0.897479,0.0684043,0.1162414,9.8 96161; %Flourine(1%) A2 AЗ Υ1 Υ2 YЗ A1 0.6935408,0.4052977,0.9111432,0.0717021,0.1256396,9.896154; %B2O3 3% A1 A2 A3 YЗ Y1 Y2 0.69325,0.3972,0.86008,0.06723987,0.11714009,9.7760984; YЗ %GeO2 3.1% Α1 A2 AЗ Υ1 Υ2 0.7028554,0.4146307,0.897454,0.0727723,0.11430853,9.8961609; %P2O5 9.1% AЗ YЗ Α1 A2 Υ1 Y2 0.69579,0.452497,0.712513,0.061568,0.119921,8.656641]; %matrix to plot all lines for n and dispersion [n matrix,md matrix]=mncalculate(constants array,y vector); %plotting figure h=plot(y vector, n matrix, 'LineWidth', 2); set(h, {'Marker'}, {'+';'s';'o';'*';'x'}) title(' '); xlabel('\lambda Wave Length(\mu m)','fontsize',15); ylabel('n','fontsize',20); $\gamma = \frac{1}{2n} \frac{d^2n}{d^2n}$ \mathrm{d\lambda^2}}(\frac{ps}{km.nm}\$)','Interpreter','LaTex','fonts ize',15); legend('Pure SIO2', 'Flourine(1%)', 'B2O3 (3%)', 'GeO2 (3.1%)', 'P2O5 (9.1%)','fontsize',15); grid on; datacursormode on; figure m=plot(y_vector,md_matrix/power(10,-12),'LineWidth',2); set(m, {'Marker'}, { +';'s';'o';'*';'x'}) title(' '); xlabel('\lambda Wave Length(\mu m)', 'fontsize', 15); ylabel('Dispersion (\$\frac{ps}{km.nm}\$)','Interpreter','LaTex','fontsize',20); $\gamma = \frac{1}{2n} \{c\, \$ \mathrm{d\lambda^2}}(\frac{ps}{km.nm}\$)','Interpreter','LaTex','fonts ize',15); SIO2', 'Flourine(1%)', 'B2O3 (3%)', 'GeO2 (3.1%)', 'P2O5 legend('Pure (9.1%)','fontsize',15); grid on; datacursormode on;

ويبين الشكل (1) نتائج البرنامج:

الشكل(1): تغير قرينة الانكسار بتابعية الطول الموجي من أجل مجموعة مواد السيليكا.

مج ماتلاب:	من برنا	، عليها	الحصول	ی تم	سار الذ	فرائن الانك	قيم ذ	(2)	الجدول	ويبين
------------	---------	---------	--------	------	---------	-------------	-------	-----	--------	-------

λ(μm)	$n(\lambda)$						
	Pure SIO2	Flourine(1%)	B2O3 3%	GeO2 3.1%	P2O5 9.1%		
1.2	1.448050164	1.446450285	1.443363297	1.452750625	1.463122718		
1.26	1.447369991	1.445734463	1.442693407	1.452064413	1.462418145		
1.3	1.446917532	1.44526013	1.442247715	1.451608546	1.461949134		
1.36	1.446236638	1.444548761	1.441576901	1.450923338	1.461242791		
1.4	1.445779443	1.444072563	1.441126406	1.450463734	1.460768116		
1.46	1.44508615	1.443352394	1.440443173	1.449767441	1.460047674		
1.5	1.444617663	1.442866907	1.439981419	1.449297318	1.459560382		
1.56	1.443903587	1.442128465	1.439277511	1.448581273	1.4588169		
1.6	1.443419006	1.441628276	1.438799766	1.44809567	1.458311836		

الجدول(2): يبين قيم قرائن الانكسار الموافقة لكل طول موجى من أجل مجموعة المواد المستخدمة في عملية الاشابة.

1.66	1.442677883	1.440864522	1.438069003	1.447353407	1.457538538
1.7	1.442173547	1.440345531	1.437571655	1.446848551	1.457011708
1.76	1.441400507	1.439551027	1.436809228	1.446075056	1.456203229
1.8	1.440873513	1.439010004	1.436289404	1.44554796	1.455651401
1.86	1.440064618	1.438180387	1.435491416	1.444739189	1.454803306
1.9	1.439512572	1.437614691	1.434946745	1.444187398	1.454223749
1.96	1.43866451	1.436746324	1.434109909	1.443339961	1.453332212
2	1.438085359	1.43615371	1.433538353	1.442761377	1.452722522
2.06	1.43719524	1.435243447	1.432659797	1.441872324	1.451784113
2.1	1.436587161	1.434621941	1.432059541	1.441265091	1.451142095
2.16	1.435652374	1.433666967	1.43113666	1.440331766	1.450153622
2.2	1.435013692	1.433014771	1.430506032	1.439694183	1.449477202
2.26	1.434031802	1.432012482	1.429536393	1.438714119	1.448435608
2.3	1.433360934	1.43132791	1.428873808	1.438044584	1.447722769
2.36	1.432329608	1.430275834	1.427855075	1.437015424	1.446625045
2.4	1.431625019	1.429557265	1.427158993	1.436312387	1.445873781

2-حساب معامل التبدد المادي:

بعد الحصول على ثوابت معادلة سيلمر من أجل مواد الزجاج المستخدمة والتوصل إلى قرائن الانكسار الخاصة بكل مادة، قمنا بكتابة برنامج ماتلاب لحساب معامل التبدد المادي ويبين النص التالي نص البرنامج المكتوب: function [n vec,m dispersion]=mncalculate(constants, y vector)

```
[r c]=size(constants);
for i=1:r
   al=constants(i,1);
   a2=constants(i,2);
   a3=constants(i,3);
    y1=constants(i,4);
    y2=constants(i,5);
   y3=constants(i,6);
[n,m]=mn calculate(a1,a2,a3,y1,y2,y3,y vector);
n vec(:,i)=n';
m dispersion(:,i)=m';
end
function
[n_vec,m_dispersion]=mn_calculate(a1,a2,a3,y1,y2,y3,y_vector)
8-----
%y_vector=y_vector*power(10,-6);
[r c]=size(y_vector);
```

```
syms lambda;
% n relation by Lambda
p1=(a1*lambda^2)/((lambda^2)-y1^2);
p2=(a2*lambda^2)/((lambda^2)-y2^2);
p3=(a3*lambda^2)/((lambda^2)-y3^2);
t=p1+p2+p3;
n=(t+1)^{(1/2)};
8-----
%Evulate n relation with Lambda Values
n_vector=subs(n,lambda,y_vector);
8-----
%Derivating N by lambda twice
n der function=diff(n,lambda,2);
%Calcualte derivation values
n derivatives=vpa(subs(n der function,lambda,y vector));
8-----
%calcualte Material Dispersion Values
for i=1:c
material dispersion(i)=vpa((y vector(i)*(-
1) *n derivatives(i)) / (3*power(10,8)));
end
m_dispersion=double(material_dispersion);
n_vec=double(n_vector);
%_
```

يبين الشكل(2) نتائج البرنامج:

الشكل (2): منحنيات معامل التبدد المادي من اجل السيليكا النقية ومجموعة المواد المستخدمة في عملية الإشابة.

ويبين الجدول(3) نتائج التبدد المادي من أجل مواد الزجاج التي تم الحصول عليها من برنامج ماتلاب:

λ(μm)	Material Dispersion(ps/nm.km)						
	Pure SiO ₂	Flourine(1%)	B ₂ O ₃ (3%)	GeO ₂ (3.1%)	P ₂ O ₅ (9.1%)		
1.2	-7.90	-12.5	-7.63	-9.35	-7.62		
1.26	-1.29	-5.16	-1.12	-2.56	-0.653		
1.3	2.65	-0.8	2.76	1.48	3.51		
1.36	7.99	5.09	8.03	6.95	9.19		
1.4	11.2	8.66	11.2	10.3	12.7		
1.46	15.8	13.6	15.7	14.9	17.5		
1.5	18.6	16.6	18.5	17.8	20.5		
1.56	22.5	20.9	22.4	21.8	24.9		
1.6	25.1	23.6	24.9	24.3	27.6		
1.66	28.7	27.5	28.4	28	31.6		
1.7	31	30	30.7	30.4	34.2		
1.76	34.4	33.6	34.1	33.8	38		
1.8	36.6	35.9	36.3	36	40.5		
1.86	39.9	39.4	39.5	39.3	44.2		
1.9	42	41.6	41.7	41.5	46.6		
1.96	45.2	45	44.8	44.7	50.3		
2	47.3	47.2	47	46.9	52.8		
2.06	50.6	50.6	50.2	50.1	56.6		
2.1	52.7	52.8	52.3	52.3	59.1		
2.16	56	56.2	55.5	55.5	63		
2.2	58.2	58.5	57.7	57.7	65.7		
2.26	61.5	61.9	61.1	61.1	69.7		
2.3	63.8	64.2	63.3	63.3	72.5		
2.36	67.2	67.8	66.8	66.8	76.8		
2.4	69.6	70.2	69.1	69.1	79.7		

الجدول (3): قيم معاملات منحني التبدد المادي الموافقة لكل طول موجي.

الاستنتاجات والتوصيات:

*الاستنتاجات:

- درس البحث تأثير عملية الإشابة على معامل التبدد المادي.
 - لكل مادة طول موجي صفري يكون عنده معامل التبدد المادي مساو للصفر.
 - عند الإشابة بمواد (P₂O₅,B₂O₃) ينزاح منحني معامل التبدد المادي نحو الأطوال الموجية القصيرة.
 - عند الإشابة بمواد (Flourine،GeO₂) ينزاح منحني معامل التبدد المادي نحو الأطوال الموجية الطويلة.
 - عند الإشابة بمواد (Flourine،GeO₂) ينزاح منحني معامل التبدد المادي معامل التبدد المادي نحو الأطوال الموجية الطويلة.
 - عند الإشابة بمواد (Flourine،GeO₂) ينزاح منحني معامل التبدد المادي نحو الأطوال الموجية الطويلة.
 - عند الإشابة بمواد (Flourine،GeO₂) ينزاح منحني معامل التبدد المادي نحو الأطوال الموجية الطويلة.
 - عند الإشابة بمواد (Flourine،GeO₂) ينزاح منحني معامل التبدد المادي نحو الأطوال الموجية الطويلة.

المراجع:

[1] Malitson, I.Interspecimen Comparison of the Refractive Index of Fused Silica, OSA.55 (10), 1965, 1205-1209.

[2] Saurabh; and Kumar, V. *Power Communication using Optical-Fiber*. IPASJ International Journal of Electrical Engineering (IIJEE). 3 (12),2015, 11-15.

[3] Dubey, P. K; and Shukla, V. *Dispersion in Optical Fiber Communication*. International Journal of Science & Research (IJSR). 3 (10), 2014, 236-239.

[4] Essiambre, R. J; Kramer, G; Winzer, P. J; Foschini, G. J; and Goebel, B.*Capacity Limits of Optical Fiber Networks* (Invited Paper). Journal of Lightwave Technology . 28 (4), 2010, 662-710.

[5] Ghatak, Ajoy; and Thyagarajan, k. *Optical waveguides and Fibers*. *Fundamentals of Photonics*.India:University of Connecticut, 2000, 249-292.

[6] Ghatak, Ajoy; and Thyagarajan, k. *Introduction to Fiber Optics*. New Delhi, 1997,530.

[7] جوزيف، باليز . (1992). الاتصالات بالألياف البصرية (ترجمة جورج صنيج). سوريا: المنظمة العربية للتربية والثقافة والعلوم، 609

[8] Binh, L; Chin, k; and Sharma, D. *Design of Dispersion Flattened and Compensating Fibers for Dispersion-managed Optical Communication Systems* (Technical Paper). IEEE Journal of Lightwave Technology, 2003, 63-82

[9] Kitamura, Rei; Pilon, Laurent; and Jonasz, Miroslaw. *Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature*, APPLIED OPTICS. 46 (33), 2007, 8118-8133.

[10] Brückner, Volkmar.To the use of Sellmeier formula. Germany: Springer, 2011 <u>http://www.springer.com/978-3-8348-1302-2</u>.

[11] Senior, John.*Optical Fiber Communications: Principles and Practice*. 3rd ed. England: Pearson Education Limited, 2009, 1076.

[12] Agrawal, Govind. *Fiber-Optic Communication Systems*. 3rd ed.John Wiley &Sons,Inc, New York: 2002. 546.