دراسة ${f S}-$ خاصة أصلية في صف جبور لي

الدكتور أحمد حسان الغصين *

(قبل للنشر في 6/1/2002)

🗆 الملخّص 🗆

هذا البحث مكرس للإجابة على السؤال التالي : ليكن L جبر لي فوق حقل مميزه يساوي الصفر ولتكن S –خاصنة أصلية في صف جبور لي . هل S–خاصنة أصلية تكون دوما مثالية مميزة في الجبر L ؟

D للإجابة على هذا السؤال عرضنا أولا بعض التعريفات والمبرهنات والتمهيدات الضرورية ومن ثم برهنا أنه اذا كان D(S(L) أ S(L) بحيث أي اشتقاق في جبر لي L بحيث أن S(L) أ S(L) حيث n اكبر او تساوي الواحد عندئذ (L) أ S(L) وكذلك بينا انه من اجل أي جبر ارتيني S(L) هي مثالية مميزة في L وبعد ذلك اعطينا مثالا يجيب على السؤال الطروح ، إذ ليس من الضروري أن تكون S دوما مثالية مميزة في L.

^{*} أستاذ مساعد في قسم الرياضيات – كلية العلوم – جامعة تشرين – اللاذقية – سورية .

1 - Introduction

A subspace I of a Lie algebra L is called an ideal of L, if x \hat{I} L, y \hat{I} I, together imply [x, y] \hat{I} I.

A derivation D in L is a linear mapping of L into L satisfying the following condition: D (x y) = D(x) y + x D(y) for every x, y \hat{I} L .denote by Der (L) the set of derivations in L Ideal I of L is said to be characteristic ideal of L, denote it by I<L, if I is subvector space of L and D(I) \hat{I} L for every D \hat{I} Der (L).The ideal I of L ie algebra L is said to be D-invariant, if D(I) \hat{I} , D is derivation of L.Define a sequence of ideal of L by

 $\mathbf{L}^{(0)} = \mathbf{L}, \mathbf{L}^{(1)} = [\mathbf{L}, \mathbf{L}], \mathbf{L}^{(2)} = [\mathbf{L}^{(1)}, \mathbf{L}^{(1)}], \dots \mathbf{L}^{(i)} = [\mathbf{L}^{(i-1)}, \mathbf{L}^{(i-1)}]$

Called L solvable if $L^{(n)} = 0$ for som n

Define a sequence of ideal of L by $L^0 = L, L^1 = [L, L], L^2 = [L, L^1], \dots, L^n = [L, L^{n-1}]$

L is called nilpotent if $L^n = 0$ for some n³ 1.[see 1].

A Lie algebra L is called a complete Lie algebra if its center C (L) is zero and its derivation are all inner [see 2] . Let L be finite-dimensional Lie algebra over a field of characteristic zero, then L has Levi decomposition i.e. L = S + R, where S is a maximal semi simple sub algebra of L and is called the Levi sub algebra of L and R is maximal solvable ideal of L and its called the radical of L, the ideal

 $I_0 = [L, L]$ $\mathbf{\hat{C}R} = [L, R]$ is called the nilpotent radical of L [see 2].

DEFINITION 1-1: The class S of S-algebra is said to be S-radical property in class Lie algebra, if the class S satisfy the following conditions:

1)- Class S is closed homomorphic,

2)- Every algebra L contain a maximal ideal belongs to class S, denote it by S(L),

3)- For every algebra L , quotient algebra L $\mbox{\tt PS}(L$) no contain ideals difference of zero belongs to class S .

S-radical property is called over solvable, if solvable algebra's belongs to class S.

II - D-INVARIANT RADICAL PROPERTY

All considered algebra in this part are Lie algebra over a field of characteristic zero

DEFINITION 2-1: S-radical property is said to be D-invariance if for every algebra L, its radical is characteristic ideal in L.

LEMMA 2-1: If I is an ideal of algebra L, such that $I^2 = I$, then I is characteristic ideal of L. **Proof** its clearly.

LEMMA 2-2: Let S is an S-radical property, if there exists non zero S-radical of abelian algebra B, then S is a solvable property.

Proof: Let L be an arbitrary nonzero abelian algebra, denote by $\langle a \rangle$ the ideal which generated by a in algebra L. Because L and B are abelian algebra's, so every linear mapping between L and B is homomorphism algebra, that is ideal $\langle a \rangle$ is homomorphism image nonzero algebra S-radical B. Hence, ideal is S-radical its true for every element algebra L, then L is S-radical algebra. Further proof is induction on grade solvability algebra.

LEMMA 2-3: If I is S-radical ideal of algebra L, such that L/I is S-radical algebra, then algebra L is S-radical.

Proof: [see 1,3] .

THEOREM 2-1: If S-radical property is not invariance, then S is radical property over solvable.

Proof: Let S be a radical property which is not invariance on account derivation, then there exists so algebra L and so it derivation D, that S (L) not contain D(S(L)). By lemma 2-1, we get $(S(L))^{2 \ 1} S(L)$. Because algebra S(L) is S-radical, then

 $B = S(L) / (S(L))^2$ is nonzero S-algebra . Algebra B is abelian, hence since lemma 2-1 we have S-radical property is over solvable.

LEMMA 2-3: If I is ideal of algebra L, D it derivation, then I + D(I) is also ideal of algebra L [see 1].

LEMMA 2-4: If I is solvable ideal of algebra L , D it derivation , then I + D(I) is solvable ideal of algebra L [see 1].

LEMMA 2-5: If I is ideal of algebra L, then for any derivation D of algebra L we get:

1)- D(I $^{(n+1)}$) Í I $^{(n)}$,

2)-D(I^{n+1}) Í I^{n} .

Proof: It is known [5], if I is ideal of algebra L, then for every natural number k> 0, I^(k), I^k are ideals in L. So we have D(I⁽ⁿ⁺¹⁾) = D[I⁽ⁿ⁾, I⁽ⁿ⁾] Í I⁽ⁿ⁾ D(I⁽ⁿ⁾) + D(I⁽ⁿ⁾) I⁽ⁿ⁾ Í I⁽ⁿ⁾

Proof to condition 2 is similar.

THEOREM 2-2: Let S be a radical property in class lie algebra, if D is any derivation of lie algebra L, that D($(S(L)^n) I$) I S(L)ⁿ for some n³ 1, then

D((S(L)) I S(L)).

Proof: Let $D(S(L)^{(n)}) i S(L)^{(n)}$, n³ 1. Since $S(L)^{(n)} i S(L)$, then

 $S(L_1) = S(L)/S(L)^{(n)}$, where $L_1 = L/S(L)^{(n)}$, from this we have that $S(L_1)$ is solvable ideal of algebra L, hence by lemma (2-4) $S(L_1) + D_1(S(L_1))$ is solvable ideal in

Algebra L ; where D_1 is derivation D-algebra L .

If S property is not solvable, then by theorem 2-1 we get D(S(L)) i S(L). Assume that the S-property is over solvable, then $S(L_1) + D_1(S(L_1)) i S(L_1)$ hence $D_1(S(L_1)) i S(L_1)$ thus D(S(L)) i S(L)

Corollary 2-1: If radical S(L) algebra L satisfy condition S $(L_1)^{(n)}$) = S(L)⁽ⁿ⁺¹⁾ for some natural number n then S(L) is characteristic ideal in algebra L.

Proof: According to the lemma 2-5, $D(S(L)^{(n+1)}) i S(L)^{(n+1)}$ for any derivation D of algebra L, from this and from theorem 2-2 we have D(S(L)) i S(L).

Theorem 2-3 : Let S be a S-radical property , then for every Artinian algebra L radical S(L) is characteristic ideal in L .

Proof: If L is Artinian algebra, then there exists a natural number k such, that

 $S(L)^{(k)} = S(L)^{(k+1)}$ from this and according corollary 2-1 from theorem 2-1 we have D(S(L)) i S(L) for any derivation D of algebra L.

Corollary 2-2 : Let L be an algebra ,S-radical property and D-derivation algebra L if linear space D(S(L)) is finite dimensional ,then D(S(L)) i S(L).

Proof: Since the linear space D(S(L)) has finite dimensional, therefore there exists a natural number n such that $D(S(L)^{(n)}) = S(L)^{(n+1)}$ from lemma 2-5 and corollary 2-1 from theorem 2-2 we get $D(S(L)) \int S(L)$.

Now, we reflect over the following question. If radical algebra L precipitate as simple component in L the is it characteristic ideal in L ?

To this effect we consider the following situation.

Let j be a any homomorphism algebra L in algebra B, we denote by L j B the simple sum LÅ B to vector spaces L,B which defined in following way :

The multiplication operation, if a \hat{I} L, b \hat{I} B, then a.b = j (a).b. Clearly show that L j B with above operation is Lie algebra over the same field.

In algebras L and B easy check, that B is ideal in algebra L j B.

Lemma 2-6: Let D be a derivation of algebra L j B such, that D(B) non contain in algebra B ,then C(L) ,(the center of algebra L) is different of zero .

Proof: From assumption there exists an element bÎ B such, that D(b)Ï B. Hence D(b) = b' + b* where b'Î B, b*Î L, b* ¹ 0. Now let a be a arbitrary element of algebra L, then a.b = j(a).bÎ B², consequently D(a.b) = D(a).b + a.d(b)Î B. Because b, b' Î B, that B' D(a.b) = D(a).b + a.D(b) = D(a).b + ab' Î B then $ab^* \hat{I}$ B. On the other hand $ab^* \hat{I}$ L hence $ab^* = 0$ that is the Centrum C (L) of algebra L contain element $b^* \hat{I}$ 0 as desired.

Theorem 2-4 : Let S-radical algebra Lj B be equal to B ,then it is characteristic ideal in algebra L j B.

Proof: According to the theorem 2-1 we can assume, that S-radical property is over solvable. Suppose that for certain derivation D of algebra L j B, D(B) \ddot{E} B from this and according to lemma 2-6 that in algebra L there exists nonzero ideal I Centrum C(L) algebra L. Algebra I + B is S-radical as homomorphic image

(Lj B)/B, this is not possible because S(Lj B) = B.

COROLLARY 2-3 : Let S be a S-radical property of algebra L, if the radical S(L)

Algebra L distribute as simple component, then it is characteristic ideal algebra L.

Proof: From assumption there exists ideal I algebra L, such that L = I + S(L).

Let j be a zero homomorphism algebra I in S(L), then

 $L = I + S(L) = Ij_{=0} S(L)$. Now by theorem 2-4 D(S(L)) I S(L) for any derivation D algebra L.

DEFINITION 2-2: Derivation d algebra L is said to be nil-derivation, if for every element all L there exists as natural number n>0, such that $D^n(a) = 0$.

It is known [4,5] that if L is nil-derivation algebra L invariance relative on automorphism algebra L , D(L) I L. From this we have the following lemma.

LEMMA 2-7: If D is nil-derivation algebra L, then D (S (L)) \hat{I} S (L) whereas S is S-radical property.

Let $a_1, a_2, a_3, ..., a_n$ are elements of algebra L. Denote by $(a_1, a_2, a_3, ..., a_n)_r$ the multiplication nelements of part bricks r, whereas r part bracket of word $a_1, a_2, a_3, ..., a_n$.

LEMMA 2-8: Let $a_1, a_2, a_3, ..., a_n$ are elements of ideal I of algebra L, then for every derivation D algebra L we have

 $(D(a_1), D(a_2), ..., D(a_n))_r$ **î** I+1/n!Dⁿ $(a_1, a_2, ..., a_n)_r$

Proof: From inequality which we can fined in [6] we have

 $D^{n}(a_{1}, a_{2}, ..., a_{n}) = S^{\binom{n}{a_{1}}}_{\binom{n-a_{1}}{a_{2}}} ... \binom{n-a_{1}-a_{2}-...-a_{n-2}}{\binom{n-a_{1}-a_{2}-...-a_{n-2}}{\binom{n-a_{1}}{a_{n-1}}} (D^{a_{1}}(a_{1}), ..., D^{a_{n}}(a_{n}))_{r}$ (*)

Where the sum over all a_1 , a_2 , ..., a_{n-1} such that $0 \pounds a \pounds n$, $0 \pounds a_i \pounds n - a_{1} - ... - a_{n-1}$.

 $a_n = n - a_1 - ... - a_{n-1}$, $1 \notin I \notin n - 1$, $D^0(a) = a$, as $a_1 + ... + a_n + a$ and all exponent a_i are non negative, then $a_1 = a_2 = ... = a_n = 1$ or $a_I = 0$ for some I. If exponent $a_I = 0$, then element $(D^{a_1}(a_1),...,D^{a_n}(a_n))_r$ **î** I.

Because $a_I \hat{I}$ I and $D(a_I) = a_I$ so one expression which all exponent a_I are non equal to zero, therefore $(D(a_1), ..., D(a_n))_r$ is manoeuvrig factor is equal to n! hence from (*) we have $D^n(a_1, ..., a_n)_r = n! (D(a_1), ..., D(a_n))_r$.

Let us recall that an element x of Lie algebra L over a field K is called algebraic if there exists a polynomial f (t) \hat{i} K[t] depending on x such that f(adx) = 0 [see 7].

DEFINITION 2-3: Derivation D algebra L is called algebraic derivation bounded index, if there exists a natural number n > 1, such that for every element al L, $D^n(a)l < a,D(a),...,D^{n-1}(a) >$, where $< a,D(a),...,D^{n-1}(a) >$ is sub algebra generated by elements a $,D(a),...,D^{n-1}(a) >$

THEOREM 2-5: Let S be a radical property, D derivation algebraic bounded index of algebra L, then D(SL)) $\stackrel{f}{\downarrow}$ S(L).

Proof: By virtue of theorem 2.1, we can assume, that S-radical property is over solvable, from definition of D there is a natural number n, such that

 $D^{n}(a)\hat{\mathbf{i}}\mathbf{p}a, D(a),..., D^{n}(a)\mathbf{f}$ for some element $a\hat{\mathbf{i}}L$

Let $a_1, a_2, ..., a_n$ are any elements from radical S(L) and let $a = ((..(a_1 a_2)a_3)..)a_n)$, by virtue of lemma 2.5 we:

 $D^{i}(a)\hat{I} D^{i}(S(L)^{n})\hat{I} S(A)^{n-i}, \quad i = 1, 2, ..., n-1$

So element $D^{n-1}(a)$ belongs to radical S(L) algebra L. By virtue of lemma 2.3 S(L) + D (S(L)) is ideal of algebra L, hence S(L) + D (S(L)) / S(L) is solvable ideal of algebra L/S(L) this is, in the presence of over solvable radical S, that

 $S(L) + D(S(L)) \hat{I} S(L)$, from this we have $D(S(L)) \hat{I} S(L)$.

III-NORMAL RADICAL PROPERTY

Let L be a Lie algebra over a field K and let B always ,associative, commutative with unit element 1 (over also K) as known in [8] that $L\overset{R}{_{K}}B$ is Lie algebra and algebra L may be imbedding in algebra $L\overset{R}{_{K}}B$.

LEMMA 3-1 : If D is derivation of algebra B, then the mapping

id Ä d : LÄ B ® LÄ B

Defined at below:

$$(\operatorname{id}_{K}\overset{\ddot{\mathsf{A}}}{\mathbf{d}})(\overset{\circ}{\mathbf{a}}_{i}\overset{\ddot{\mathsf{A}}}{\mathbf{p}}_{i}) = \overset{\circ}{\overset{\circ}{\mathbf{a}}}_{i=1}^{n} a_{i}\overset{\ddot{\mathsf{A}}}{\mathbf{d}}(p_{i})$$

is derivation of algebra $L\ddot{A}_K B$. If however D is nil-derivation ,then derivation id $\ddot{A}_K d$ is also nil-derivation .

Proof : see N. JACOBSON . Lie algebra .Intersciance New York 1962 page 158 .

DEFINITION 3-1: We say that S-radical property is B-normal if for every algebra L , S ($L\ddot{A}_{K}B$) = I $\ddot{A}_{K}B$, where I is reliable ideal of algebra A.[see 5]

THEOREM 3-1 : S-radical property is B-normal iff for every algebra L, from condition S ($L\ddot{A}_K B$) ¹ 0 result consequence S ($L\ddot{A}_K B$) $\mathbf{C} A = 0$.

Now , we show following lemma .

LEMMA 3-2 : If for every algebra L there exists nil-derivations $d_1, d_2, ... d_n$ algebra B such that from condition S (LÄ_K B) Q L¹ 0 consequence

(id $\ddot{A} d_1$)(id $\ddot{A} d_2$)...(id $\ddot{A} d_n$)S(L $\ddot{A} B$) ζ L¹ 0

then S-radical property is B-normal.

Proof: Suppose that S ($L\ddot{A}_K B$) ¹ 0 then there is element 0 ¹ a \hat{I} S ($L\ddot{A}_K B$) such that $d_1, d_2, ..., d_n$ are nil-derivation ,hence from lemma 2-7 and lemma 3-1 we have for i=1,2,3.. (id $\ddot{A}d_n$)(S ($L\ddot{A}_K B$)) \hat{I} S ($L\ddot{A}_K B$), therefore

0¹ (id \ddot{A} d₁)(id \ddot{A} d₂)...(id \ddot{A} d_n)(a) Î S(A \ddot{A} B) Ç A

Thus we have complete the proof.

THEOREM 3-2: Let L be a finite dimension algebra , then for every S-radical property , B-normal radical S ($L\ddot{A}_K B$) is invariance respect to derivation algebra $L\ddot{A}_K B$.

Proof: S-radical property is B-normal ,then S ($L\ddot{A}_K B$) = $I\ddot{A}_K B$, because algebra L has finite dimension there exist a natural number n>0 that $I^{(n)} = I^{(n+1)}$, therefore we get (S ($L\ddot{A}_K B$))⁽ⁿ⁺¹⁾ = $I^{(n+1)}\ddot{A}_K B^{(n+1)} = (I\ddot{A}_K B)^{(n)} = (S(L\ddot{A}_K B))^{(n)}$ Now according to corollary1from theorem 2-2 we have demonstration fact .

COROLLARY 3-1: Let L be a finite dimension algebra , then for every S-radical property , ideal $S(L[x_1,x_2,..,x_n])$ is characteristic ideal in $L[x_1,x_2,..,x_n]$ where $L[x_1,x_2,..,x_n,..,x_n]$ is polynomial algebra with infinite quantity variable, $x_1,x_2,..,x_n$,

Proof : It is known that algebra $L[x_1, x_2, ..., x_a, ...]$ is isomorphic with algebra $L\ddot{A}_K K[x_1, x_2, ..., x_a, ..., x_n]$, we show that every $K[x_1, x_2, ..., x_a, ..., x_n]$ radical property is normal. Suppose that $S(L\ddot{A}_K K[x_1, x_2, ..., x_a, ..., x_n])$ 1 0, then there is nonzero polynomial $W(x_{a_1}, x_{a_2}, ..., x_{a_n}, ..., x_{a_n})$ $\hat{I} S(A\ddot{A} K[x_1, x_2, ..., x_a, ..., x_n])$

It is known that derivation d_a (W)(W / x_a) for every valued a is nil-derivation algebra L $[x_1, x_2, ..., x_a, ..., x_n]$. Now, we take right derivation id $\ddot{A} d_a$ we get

Applying lemma 3.2 we have that S radical property is K $[x_1, x_2, ..., x_a, ..., x_n]$ normal hence from theorem 3-2 S (L $[x_1, x_2, ..., x_a, ..., x_n]$) is characteristic ideal in algebra L $[x_1, x_2, ..., x_a, ..., x_n]$.

Now we investigate problem invariable radicals $L\ddot{A}_K B$, where B is a algebra group K[G] over a field K, G is abelian group. We define following symbol. Let $x = a_1 g_1 + a_2 g_2 + ... + a_n g_n \hat{I} L \ddot{A} K[G]$, where $a_1, a_2, ..., a_n \hat{I} A, g_1, g_2 ..., g_n \hat{I} G$, denote by Supp x the set of element g_i such that $a_i \stackrel{1}{} 0$.

If Suppx = { $g_1, g_2, ..., g_n$ }, then the number n = l(x) is said to be length element x

LEMMA 3-3: Let S be a radical property, L algebra, G-group, if radical S(L[G]) algebra L[G] contain element x with length n, then S(L) contain element y which also length n and e \hat{I} Supp y, where e is unit element of group G.

Proof: Take arbitrary element $z \hat{i} S (L [G])$, g any element group G. Because group G is abelian then its elements we can effective with operator of algebra

L [G], therefore from [5,3] we get z g \hat{I} S(L[G]).

Now, let element x \hat{i} (L [G]), l (x) = n and let g \hat{i} Supp x because l(x) = l(x/g), e \hat{i} Supp(x/g) and x/g \hat{i} S(L[G]) then be enough take y = x/g

DEFINITION 2-3: Let K is a field. Group G is said to be K-complete if for every element g $\hat{1}$ G, g ¹ e, there is a homomorphism f group G in multiplication field K* such that f(g) = 1, 1 is unit element of field K.

LEMMA 3-4 : Let G be a complete group , then for every S radical property and every K-algebra L , if $S(L[G])^1 0$, then $S(L[G]) CA^1 0$.

Proof: Let $a = a a_i g_i$ be a nonzero element from radical S (L[G]) with minimal length. By lemma 3-3 we can assume that el Supp a. Assumption, that $g_1 = e$ we show that l(a) = 1. Assumption $g_2^{-1}e$ because group G is K-complete, there exists a homomorphism $f: G \otimes K^*$ such that $l(g_2)^{-1} 1$.

We can defined mapping \overline{f} : G \otimes L[G] at follows [see 6].

$$\overline{\mathbf{f}}(\mathbf{a}_{i} \mathbf{b}_{i} \mathbf{g}_{i}) = \mathbf{a}_{i} \mathbf{b}_{i} \mathbf{f}(\mathbf{g}_{i}) \mathbf{g}_{i}$$
, $\mathbf{b}_{i} \mathbf{\hat{l}} \mathbf{L}, \mathbf{g}_{i} \mathbf{\hat{l}} \mathbf{G}$

f is K-automorphism algebra L[G], $f(g_2) \stackrel{1}{} 1$, $f(g_1) = 1$. Hence

0¹
$$\bigotimes_{i=2}^{n} [a_i - a_i f(g_i)]g_i = a - \bar{f}(a)\hat{I} S(L(G))$$

This is not possible, since $l(a - \bar{f}(a)) < n$ we have l(a) = 1 and $S(L[G]) \bigcup L^1 (0, C)$

COROLLARY 3-3: If group G is K-complete, algebra L has finite dimension, then for every S-radical property the radical S (L [G]) is characteristic ideal in algebra L [G].

Proof: The proof is result from corollary 3-1 and theorem 3.2.

Now we give some example for S-radical property which is not invariable property.

P. M. Gohn [5], gave example Lie algebra in which equation a x = b has solution for every a 1 0, al L and for every b l L.

We consider algebra

$$R[[x]] = \{ \overset{*}{\underset{i=1}{\overset{a}{a}}} a_i x_i \qquad ; a_i \ \hat{I} \quad L \}$$

It is known that algebra of above formal series R[x] with coefficient from Lie algebra and set I formula series from S a x, $a_i \hat{l} L$ is ideal in R[[x]].

We fined all image homomorphic of algebra I.

Let 0 $^{1}\,$ a $\hat{I}\,\,$ L and let b be any element from ideal I , then

$$a = a_{n} x^{n} + a_{n+1} x^{n+1} + \dots + a x^{m} + \dots, \qquad a_{n}^{-1} 0$$

$$b = b_{1} x + b_{2} x^{2} + b_{3} x^{3} + \dots$$

$$a.b = c = c_{n+1} x^{n+1} + c_{n+2} x^{n+2} + \dots + c_{n+k} x^{n+k} + \dots$$

$$c_{n+1} = a_{n} b_{1}$$

$$c_{n+2} = a_{n} b_{2} + a_{n+1} b_{1}$$

.

 $c_{n+k} = a_n b_k + a_{n+1} b_{k-1} + \dots + a_{n+k-1} b_1$

Because in algebra L, inequality ax = b has solution for a ¹ 0, a \hat{I} L and for every b \hat{I} L, choose satisfactory accordingly coefficient $b_1, b_2, ..., b_n, ...$ We can get any value $c_{n+1}, c_{n+2}, ..., c_{n+k}, ...$ from this result that $I^{n+1} \hat{I} < a >$;

< a > is an ideal generated by element a from algebra L.

Now, let I / Y be any homomorphic image of algebra I, let J¹ 0 then there exists

 0^{1} a \hat{I} J \hat{I} I from this result there exists a natural number m > 0 such that

 $I^m i < a > i$ J. We showed that every proper homomorphic image of algebra I is nilpotent.

Let S be a minimum S-radical property , such that algebra I and all its homomorphic image belongs to class S, (by [8] this radical property exists) , we show that S(R[x]) = I . Clearly S(I) = I and quotient algebra R[[x]] / I is isomorphic to algebra L .

Algebra L non contain maneuverability ideals and is not nilpotent algebra , also algebras L and I are not isomorphic because $L^2 = L$ but I²¹ I to mean that algebra <u>L</u> no contain nonzero S-ideals, hence S(R[[x]]) = I.

Now let $a = a_0 + a_1 x^1 + a_2 x^2 + ... + a_n x^n$ be an element of algebra R[[x]]. Mapping D ($a_0 + a_1 x + ... + a_n x^n$) = $a_1 + 2a_2 x + ... + na_n x^{n-1}$ is a derivation of algebra R[[x]] Let a^1 0 be an element of algebra L, because

S(R[[x]]) = I then $ax\hat{I} I$, but for derivation D we have

 $D(ax) = a \ddot{I} I = S(R[[x]]).$

REFERENCES:

- 1 N. JACOBSON . Lie algebra .Intersciance New York 1962
- 2 J.Cuipo and M. Doj. The Clasification Of Compacte Lie Algebra With Commutative Nilpotent Radical .Pro.of the Am.Math.Soci.V.126 n1 (19980,15-23 .
- 3- N.Divinski, A.sulinski. Kurosh Radical Of Rig's With Opertors .Canad.J.Math 17,(1965), 228-280.
- 4 -T.Anderson .Hereditary Radical And Derivation Of Algeb.Can.J.Math.21(1968),372-377.
- 5 P.M. Cohn. On A Class Of Simple Ring's .J.Math.5 (1958) 103-107 .
- 6 A.M.Slinco Uwagi O Rozniczkowania Pierscieni. Sib.Math.Z.13 (1972) 1395-1397.
- 7 B.Cuarto, J.Gate. Linearly Compact Algebraic Lie Algebras And Coalgebraic Lie Coalgebras .Proc.of Am.Math.Soci.V.125.N7 (1997), 1945-1952.
- 8 A.Kurosh . Radykaly Pierscini I Algebr . Mat Sb.33 (1953) 13-20 .

2002(12) مجلة جامعة تشرين للدراسات و البحوث العلمية _ سلسلة العلوم الأساسية المجلد (24) العدد (12) Tishreen University Journal for Studies and Scientific Research-Basic Science Series Vol (24) No (12) 2002

Calculation of the photoelectric cross-section for subshells P-compounds

Dr.Bader Al-aaraj^{*}

(Accepted 18/9/2002)

\Box ABSTRACT \Box

The intensity of the photoelectron peaks depends on a number of factors including the photoelectric cross-section, the electron escape depth, the spectrometer transmission, surface roughness or inhomogeneties.

Therefore, this work aims at calculating the photoelectric cross-section for different subshells of phosphorus –compounds.

By determining cross-section we could estimate the probability per incident photon for creating a photoelectron in a subshell.

* Associate Professor, Department of Physics, Faculty of Science, Tishreen University, Lattakia-Syria