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  هذا البحث مكرس للإجابة على السؤال التالي :

  خاصة أصلیة في صف جبور لي .– Sوق حقل ممیزه یساوي الصفر  ولتكن جبر لي ف Lلیكن 
  ؟ Lخاصة أصلیة تكون دوما مثالیة ممیزة في الجبر -Sهل 

 Dللإجابة على هذا السؤال عرضنا أولا بعض التعریفات والمبرهنات  والتمهیدات الضروریة ومن ثم برهنا أنه اذا كان   
  D(S(L)) Í   S(L)اكبر او تساوي الواحد عندئذ  nحیث   n D(S(L))n Í   S(L)بحیث أن    Lأي اشتقاق في جبر لي  

. وبعد ذلك اعطینا مثالا  یجیب على  السؤال الطروح ،  Lهي مثالیة ممیزة في  S(L)وكذلك بینا انه من اجل أي جبر ارتیني     
  . Lدوما مثالیة ممیزة في  Sإذ لیس من الضروري أن تكون 
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1 - Introduction  
 

A subspace I of a Lie algebra L is called an ideal of L, if x Î L ,y Î I ,together  
imply [ x, y]  Î  I  . 
  

A derivation D in L is a linear mapping of L into L satisfying the following condition:   
D (x y ) =  D(x) y +  x D(y) for every x , y Î  L .denote by Der ( L )the set of derivations in L Ideal I 
of L is said to be characteristic ideal of  L , denote it by  I< L, if I is sub vector space of L and D(I)Ì 
L for every D Î Der ( L ).The ideal I  of  Lie algebra L is said to be  D-invariant , if D( I ) Í I , D is 
derivation of L .Define a sequence of ideal of L by   
  

],[],...,[],,[, )1()1()()1()1()2()1()0( --==== iii LLLLLLLLLLL  
    Called L solvable if nsomforL n 0)( =   

 Define a sequence of ideal of L by ],[...].........,[],,[, 11210 -==== nn LLLLLLLLLLL    
 L is called nilpotent if Ln  =  0 for some n ³ 1 .[see 1]. 
 A Lie algebra L is called a complete Lie algebra if its center C ( L )  is zero  and its derivation are 

all inner [ see 2] . Let L be finite-dimensional Lie algebra over a field of characteristic zero, then L 
has Levi decomposition i.e. L =  S + R , where S is a maximal semi simple sub algebra of L and is 
called the Levi sub algebra of L and R is maximal solvable ideal of L and its called the radical of L , 
the ideal  
I0 =  [L, L]  ÇR = [L , R ]   is called the nilpotent radical of L [ see 2] .     
   
DEFINITION 1-1: The class S of S-algebra is said to be S-radical property in class Lie algebra, if 
the class S satisfy the following conditions: 
1)- Class S is closed homomorphic, 
2)- Every algebra L contain a maximal ideal belongs to class S, denote it by S(L) , 
3)- For every algebra L , quotient algebra L ¤ S( L ) no contain ideals difference of zero  belongs to 
class S . 
S-radical property is called over solvable, if solvable algebra’s belongs to class S . 
II - D-INVARIANT RADICAL PROPERTY 
All considered algebra in this part are Lie algebra over a field of characteristic zero  
DEFINITION 2-1: S-radical property is said to be D-invariance if for every algebra L, its radical is 
characteristic ideal in L. 
LEMMA 2-1: If I is an ideal of algebra L , such that I 2 =  I , then I is characteristic ideal of L . 
Proof its clearly. 
LEMMA 2-2: Let S is an S-radical property, if there exists non zero S-radical of abelian algebra B, 
then S is a solvable property. 
Proof: Let L be an arbitrary nonzero abelian algebra, denote by < a >  the ideal which generated by a 
in algebra L. Because L and B are abelian algebra’s, so every linear mapping between L and B is 
homomorphism algebra, that is ideal < a >  is homomorphism image nonzero algebra S-radical B. 
Hence, ideal is S-radical its true for every element algebra L, then L is S-radical algebra. Further 
proof is induction on grade solvability algebra. 
LEMMA 2-3: If I is S-radical ideal of algebra L, such that L / I is S-radical algebra, then algebra L 
is S-radical. 
Proof: [see 1,3]  . 
THEOREM 2-1: If S-radical property is not invariance, then S is radical property over solvable. 
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Proof: Let S be a radical property which is not invariance on account derivation, then there exists so 
algebra L and so it derivation D, that S (L) not contain D(S(L)). By lemma 2-1 , we get (S(L))2 ¹ S(L) 
. Because algebra S(L) is S-radical , then 
B = S(L) / (S(L))2  is nonzero S-algebra . Algebra B is abelian, hence since lemma 2-1 we have S-
radical property is over solvable. 
LEMMA 2-3: If I is ideal of algebra L, D it derivation, then I +  D( I ) is also ideal of algebra L [ see 
1 ] . 
LEMMA 2-4: If I is solvable ideal of algebra L ,   D it derivation , then I +  D( I ) is solvable ideal of 
algebra L [see 1 ] . 
LEMMA 2-5: If I is ideal of algebra L, then for any derivation D of algebra L we get: 
1)- D( I (n+1) )  Í I (n) , 

2)- D( I n+1 )  Í I n . 
Proof: It is known [5 ], if I is ideal of algebra L, then for every natural number k> 
0 , I (k)  , I k   are ideals in L . So we have  
D( I (n+1)  ) =  D[ I (n) ,  I (n) ]  Í  I(n) D( I(n) ) +  D(I(n) )  I(n) Í I (n) 
Proof to condition 2 is similar. 
THEOREM 2-2: Let S be a radical property in class lie algebra, if D is any derivation of lie algebra 
L, that D( (S(L  )n )  Í S( L) n for some n ³ 1 ,then 
 D ((S (L))  Í S( L) . 
Proof: Let D(S (L)(n) ) Í  S(L)(n) , n ³ 1  . Since S (L)(n) ) Í  S(L) , then  
 S(L 1 ) =  S(L)/ S(L)(n)  , where L1 = L / S(L)(n)   ,from this we have that S(L1) is solvable ideal of 
algebra L , hence by lemma (2-4)  S(L1) +  D1 (S(L1)) is solvable ideal in  
Algebra L ; where D1  is derivation D-algebra L .   
 If S property is not solvable, then by theorem 2-1 we get D(S(L)) Í S(L) . Assume that the S-
property is over solvable, then S(L1) + D1(S(L1)) Í S(L1) hence D1(S(L1)) Í S(L1) thus D (S(L)) Í 
S(L) 
Corollary 2-1: If radical S(L) algebra L satisfy condition S (L1)(n) ) =   S(L)(n+1)  for some natural 
number  n ,then S( L) is characteristic ideal in algebra L . 
Proof: According to the lemma 2-5, D(S (L)(n+1) ) Í  S(L)(n+ 1) for any derivation D of algebra L , 
from this and from theorem 2-2 we have D(S(L)) Í S(L) . 
Theorem 2-3 : Let S be a S-radical property , then for every Artinian algebra L radical S(L) is 
characteristic ideal in L . 
Proof: If L is Artinian algebra, then there exists a natural number k such, that  
S (L)(k)  =   S(L)(k+1)  from this and according corollary 2-1 from theorem 2-1 we have D(S(L)) Í S(L) 
for any derivation D of algebra L . 
  
Corollary 2-2 : Let L be an algebra ,S-radical property and D-derivation algebra L  if linear space 
D(S(L)) is finite dimensional ,then D(S(L)) Í S(L) . 
Proof: Since the linear space D(S(L)) has finite dimensional , therefore there exists a natural number 
n such that  D(S (L)(n) ) =   S(L)(n+1) from lemma 2-5 and corollary 2-1 from theorem 2-2 we get 
D(S(L)) Í S(L) .   
Now, we reflect over the following question. If radical algebra L precipitate as simple component in 
L the is it characteristic ideal in L ? 
To this effect we consider the following situation. 
Let j be a any homomorphism algebra L in algebra B , we denote by L j B the simple sum LÅ B to 
vector spaces L,B which defined in following way : 
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The multiplication operation, if a ÎL, bÎB, then a.b =   j(a).b .Clearly show that L j B with above 
operation is Lie algebra over the same field . 

In algebras L and B easy check, that B is ideal in algebra L j B .  

Lemma 2-6: Let D be a derivation of algebra L j B such, that D(B) non contain in algebra B ,then 
C(L) ,(the center of algebra L ) is different of zero . 

Proof: From assumption there exists an element bÎB such, that D( b)Ï B . Hence D( b) =  b' +  b* 
where b'Î B , b*Î L , b* ¹ 0 . Now let a be a arbitrary element of algebra L , then    a.b =   j(a).b Î 
B2 ,consequently D(a.b) =D(a).b +a.d(b)Î B. Because  b, b' Î B, that B ' D(a.b) =  D(a).b +  a.D(b) 
=D(a).b +ab'+ab* ,since D(a).b +ab' Î B then ab* Î B . On the other hand ab* Î L hence ab* = 0 
that is the Centrum C (L) of algebra L contain element b* ¹ 0 as desired. 

 Theorem 2-4 : Let S-radical algebra L j B be equal to B ,then it is characteristic ideal in algebra L 
j B .  

Proof: According to the theorem 2-1 we can assume, that S-radical property is over solvable. 
Suppose that for certain derivation D of algebra L j B, D(B) Ë  B  from this and according to lemma 
2-6 that  in algebra L there exists nonzero ideal I Centrum C( L ) algebra L . Algebra I +  B is S-
radical as homomorphic image  
 (L j B )/ B , this is not possible because S(L j B ) =  B . 
COROLLARY 2-3 : Let S be a S-radical property of algebra L,if the radical S(L)  
Algebra L distribute as simple component, then it is characteristic ideal algebra L . 
Proof: From assumption there exists ideal I algebra L, such that L =  I +  S( L ) . 
Let j be a zero homomorphism algebra I in S(L), then  
L = I +  S(L)  =  I j =0 S(L) . Now by theorem 2-4  D(S(L)) Í S(L) for any derivation D algebra L . 
DEFINITION 2-2: Derivation d algebra L is said to be nil-derivation, if for every element aÎL 
there exists as natural number n>0, such that Dn (a) =  0. 
It is known [4,5  ] that if L is nil-derivation algebra L invariance relative on automorphism algebra L 
,   D(L) Í L . From this we have the following lemma. 
LEMMA 2-7: If D is nil-derivation algebra L, then D (S (L)) Í S (L) whereas S is S-radical 
property. 
Let a1 ,a2 , a3,...,an  are elements of algebra L . Denote by (a1 , a2 , a3 ,...,an )r the multiplication n-
elements of part bricks r , whereas r part bracket of word a1 ,a2 , a3,...,an  . 
LEMMA 2- 8: Let a1 ,a2 , a3,...,an  are elements of ideal I of  algebra L, then for   every derivation D  
algebra L  we have  

rr ),...,(!/1))(),....,(),(( 2121 n
n

n aaaDnIaDaDaD +Î  

Proof: From inequality which we can fined in [6 ] we have 
( )( ) ( )( ) (*))(),...,(....),...,,( 1

.......
21
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-

-

-----S=  

 Where the sum over all a1 , a2 , .. , an-1 such that  0£ a £ n , 0£ a i £ n-a1-..-an-1 . 
an =     n-a1-..-an-1 , 1 £ I £ n-1 , D0(a) =  a , as a1+..+an + a  and all exponent ai  are non negative , 
then   a1 =  a2= .. =  an  = 1 or  aI  = 0 for some I . If exponent aI  = 0, then element  
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.))(),....,(( 1
1 IDD n

n Îr
aa aa    

Because aI Î I and D (aI ) =  aI  so one expression which all exponent  aI are non equal to zero , 
therefore  ( D (a1) , .., D(an) )r is manoeuvrig factor is equal to n! hence from (*) we have  Dn( a1 , 
.., an )r = n! ( D (a1) , .., D(an) )r . 
Let us recall that an element x of Lie algebra L over a field K is called algebraic if there exists a 
polynomial f (t) Î K[t]  depending on x such that f(adx) = 0 [see 7].   
DEFINITION 2-3: Derivation D algebra L is called algebraic derivation bounded index, if there 
exists a natural number n > 1, such that for every element aÎL, Dn(a)Î< a,D(a),...,Dn-1(a)>  , where 
< a,D(a),...,Dn-1(a)> is sub algebra generated by elements  a ,D(a),...,Dn-1(a)  
THEOREM 2-5: Let S be a radical property, D derivation algebraic bounded index of algebra L, 
then D(SL)) Í S(L) . 
Proof: By virtue of theorem 2.1, we can assume, that S-radical property is over solvable, from 
definition of D there is a natural number n, such that  

LelementsomeforDDD nn ÎÎ aaaaa fp )(),..,(,)(   
Let a1 ,a2,..,an  are any elements from radical S(L) and let a =  ((..(a1 a2 )a3 )..)an ) , by virtue of 
lemma 2.5 we: 

1,...,2,1,)())(()( -=ÍÎ - niASLSDD innii a  
So element Dn-1 (a ) belongs to radical S(L) algebra L . By virtue of lemma 2.3  S(L) +  D (S(L))  is 
ideal of algebra L , hence S(L) +  D (S(L)) / S(L) is  solvable  ideal of algebra L/S(L) this is , in the 
presence of over solvable radical S, that  
S(L) +D(S(L)) Í S( L) ,from this we have D(S(L)) Í S( L) .  
  
    III-NORMAL RADICAL PROPERTY 
Let L be a Lie algebra over a field K  and  let B always ,associative, commutative with unit element 
1 (over also K ) as known in [8] that BL

K
Ä  is Lie algebra and algebra L may be imbedding in 

algebra LÄK B . 

LEMMA 3-1 : If D is derivation of algebra B ,then the mapping  
 BLBLdid

KK
Ä®ÄÄ :  

Defined at below: 

å å
=

Ä=ÄÄ
n

i
iiiiK

pdapadid
1

)())((  

is derivation of algebra  LÄK B .If however D is nil-derivation ,then derivation idÄK d is also nil-
derivation . 
Proof : see N. JACOBSON . Lie algebra .Intersciance New York 1962 page 158 . 
DEFINITION 3-1 : We say that S-radical property is B-normal if for every algebra L  , S (LÄK B ) 
=  I ÄK  B , where I  is reliable ideal of algebra A .[see 5] 
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THEOREM 3-1 : S-radical property is B-normal iff for every algebra L , from condition  S (LÄK B) 
¹ 0 result consequence  S (LÄK B ) Ç A = 0 . 
Now , we show following lemma . 
LEMMA 3-2 : If for every algebra L there exists nil-derivations  d1,d2,...dn algebra  B such that from 
condition S (LÄK B ) Ç L ¹ 0 consequence  

0)())...()(( 21 ¹ÇÄÄÄÄ LBLSdiddiddid
Kn  

then S-radical property is B-normal . 
Proof: Suppose that S (LÄK B ) ¹ 0 then there is element  0 ¹ a Î S (LÄK B ) such that   d1,d2,...dn 
are nil-derivation ,hence from lemma 2-7 and lemma 3-1 we have for i=1,2,3.. (idÄdn)( S (LÄK B )) 
Í S (LÄK B ) , therefore  

ABASadiddiddid
Kn ÇÄÎÄÄÄ¹ )())()...()((0 21  

 Thus we have complete the proof . 
 
THEOREM 3-2: Let L be a finite dimension algebra  , then for every S-radical property , B-normal 
radical  S (LÄK B ) is invariance respect to derivation algebra LÄK B . 
Proof:  S-radical property is  B-normal ,then S (LÄK B ) =  IÄK B , because algebra L has finite 
dimension there exist a natural number n>0 that I(n) = I(n+1) , therefore we get  (S (LÄK B ))(n+1) =  
I(n+1) ÄK B(n+1) =  ( IÄK B)(n) =  (S(LÄK B))(n) Now according to corollary1from theorem 2-2 we have 
demonstration fact . 
COROLLARY 3-1: Let L be a finite dimension algebra , then for every S-radical property , ideal 
S(L[x1,x2,..,xn]  ) is characteristic ideal in L [x1,x2,..,xa,...xn]  where   L [x1,x2,..,xa,...xn]  is polynomial 
algebra with infinite quantity variable, x1,x2,..,xn ,  
Proof : It is known that algebra  L [x1,x2,..,xa,...]  is isomorphic with algebra LÄK K [x1,x2,..,xa,...xn] , 
we show that every K [x1,x2,..,xa,...xn]  radical property is normal . Suppose that S( LÄK K 
[x1,x2,..,xa,...xn]  ) ¹ 0, then there is nonzero polynomial 

,...),...,,[(),...,,( 2121 aaaa xxxKASxxxW
n

ÄÎ   
It is known that derivation da (W)( W / xa ) for every valued a is nil-derivation algebra  L 
[x1,x2,..,xa,...xn]  . Now , we take right derivation id Ä da  we get  
  

LxxxKASxxxWdiddid
nkiji

ÇÄÎÄÄ¹ ,...]),....,,[(),...,,())....((0 2121, aaaaaa  

 Applying lemma 3.2 we have that S radical property is  K [x1,x2,..,xa,...xn]  normal hence from 
theorem 3-2 S ( L [x1,x2,..,xa,...xn]  ) is characteristic ideal in algebra L [x1,x2,..,xa,...xn]  . 
Now we investigate problem invariable radicals LÄK B, where B is a algebra group K[G] over a field 
K , G is abelian group .We define following symbol . Let  x = a1 g1 +a2 g2 +  ...+  an gn Î L Ä K[G]  , 
where   a1 ,a2 ,..,an ÎA , g1 , g2 ..,gn Î G ,denote by Supp x the set of element gi such that a i ¹ 0 .  
If Suppx ={ g1, g2 , ..., gn},then the number n = l(x) is said to be length element x 
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 LEMMA 3-3: Let S be a radical property, L algebra, G-group, if radical S(L[G]) algebra L[G]  
contain element x with length n , then S(L) contain element y which also length n  and e Î Supp y , 
where e is unit element of group G . 
Proof: Take arbitrary element z Î S (L [G]), g any element group G. Because group G is abelian 
then its elements we can effective with operator of algebra  
L [G]  , therefore from [5,3] we get z g ÎS(L[G]) . 
Now, let element x Î  (L [G]), l (x) =  n and let g Î Supp x because l(x) =  l(x/g) , eÎSupp(x/g) and 
x/g  Î S(L[G]) then be enough take y =x/g  
 
DEFINITION 2-3: Let K is a field. Group G is said to be K-complete if for every element g Î G, g 
¹ e, there is a homomorphism f group G in multiplication field K* such that f(g) = 1 , 1 is unit 
element of field K . 
LEMMA 3-4 : Let G be a complete group , then for every S radical property and every K-algebra L , 
if S(L[G] ) ¹0, then S(L[G] ) ÇA ¹0 .  
 Proof: Let a =  å a i gi be a nonzero element from radical S ( L[G] ) with minimal length . By 
lemma 3-3 we can assume that eÎ Supp a. Assumption, that g1 =  e we show that l(a) =1 . 
Assumption g2 ¹e because group G is K-complete, there exists a homomorphism   f : G ®K* such 
that  l(g2 ) ¹ 1 .  
We can defined mapping f : G  ® L[G]  at follows [see 6].  

   
GgLbggfbgbf ii

i i
iiiii ÎÎ=å å ,,)()(  

f is K-automorphism algebra L[G]  ,f(g2) ¹ 1 , f(g1) =  1 . Hence 

å
=

Î-=-¹
n

i
iiii GLSafaggfaa

2
))(()()]([0  

This is not possible, since l(a - f (a))< n we have l (a) =1 and S (L [G]) Ç L ¹ 0. 
COROLLARY 3-3: If group G is K-complete, algebra L has finite dimension, then for every S-
radical property the radical S (L [G] ) is characteristic ideal in algebra L [G]  . 
Proof: The proof is result from corollary 3-1 and theorem 3.2. 
Now we give some example for S-radical property which is not invariable property. 
 P. M. Gohn [5], gave example Lie algebra in which equation a x =  b has solution for every a  ¹ 0 , 
aÎ L and for every b Î L .  
We consider algebra  

å
¥

=

Î=
1

};{]][[
i

iii LaxaxR     

It is known that algebra of above formal series R[x]  with coefficient from Lie algebra and set I 
formula series from  S a x  , a i Î L  is ideal in R[[x]] . 
We fined all image homomorphic of algebra I . 
Let 0 ¹ a Î L and let b be any element from ideal I , then  
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1111 ... bababac knknknkn -+-++ +++=  
Because in algebra L , inequality  ax = b has solution for a ¹ 0 , a Î L and for every b Î  L, choose 
satisfactory accordingly coefficient  b1 ,b2 , .., bn ,.. . We can get any value cn+1 , cn+2 ,.. , cn+k ,.. from 
this result that  In +1 Í <  a > ;  
< a >  is an ideal generated by element a from algebra L . 
Now , let I / Y be any homomorphic image of algebra  I , let J¹ 0 then there exists  
0 ¹ a Î J Î I  from this result there exists a natural number  m > 0 such that   
Im Í <a >  Í J . We showed that every proper homomorphic image of algebra I is nilpotent . 
Let S be a minimum S-radical property ,such that algebra I and all its homomorphic image belongs 
to class S, (by [8] this radical property exists ) , we show that S( R[x]) =  I . Clearly  S(I) =  I  and 
quotient algebra R[[x]] / I is isomorphic to algebra L . 
Algebra L non contain maneuverability ideals and is not nilpotent algebra , also algebras L and I are 
not isomorphic  because L2 =  L but I 2 ¹ I to mean that algebra L no contain nonzero S-ideals, hence 
S(R[[ x ]]) =  I . 
Now let a =  a0 +  a1 x1 +  a2 x2  + .. +a n xn   be an element of algebra R[[ x ]]  . Mapping D (a0 +  a1 x 
+  …+ an xn ) =  a1 +   2a2 x +  …+  nan xn-1  is a derivation of algebra R[[x]]   Let a ¹ 0 be an element 
of algebra L , because  
S(R[[ x ]]) =  I then   ax Î I   , but for derivation D we have  
 D(ax) =  a Ï I =  S(R[[ x]]) .              
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  ABSTRACT    

 
 

The intensity of the photoelectron peaks depends on a number of factors including the 
photoelectric cross-section,the electron escape depth, the spectrometer transmission, surface 
roughness or inhomogeneties. 

Therefore, this work aims at calculating the photoelectric cross-section for different subshells of 
phosphorus –compounds. 

By determining cross-section we could estimate the probability per incident photon for creating a 
photoelectron in a subshell. 
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