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  ABSTRACT    

                 
 
              The self consistent Hartree-Fock-Bogoliubov problem for nuclei with A=209 is 
solved by using the variation principle. Accordingly, the octupole coupling of 

2
3

2
9 dh ® and 

2
9

2
13 hi ®  of the nucleus 209Bi have been calculated for different octupole 

strengths. Moreover, the octupole coupling between 
2
9

2
15 gj ® of the nucleus 209Pb has 

been also calculated. 
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 الملخّص   
 

 

 وتـم التغیـر. دأمبـ باسـتخدام A=209     كتلـي عـدد لهـا التـي للأنویـة بوغلیوبـوف-فـوك-هـارتري مسـألة حلـت

  للإنتقـالین قطـب ثمـاني ارتباط حساب
2
3

2
9 dh ®     ، 

2
9

2
13 hi مـن أجـل سـعات مختلفـة لاهتـزاز  iB209  للنـواة  ®

 للإنتقال قطب ثماني ارتباطأخیراً حسبنا و  ثماني القطب.
2
9

2
15 gj   .Pb 209للنواة   ®

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
   sbdoma@yahoo.comمصر  -الاسكندریة-جامعة الاسكندریة-كلیة العلوم-*  أستاذ في قسم الریاضیات

  سوریة -اللاذقیة-جامعة تشرین-كلیة العلوم-أستاذ في قسم الفیزیاء ** 
  سوریة -اللاذقیة-جامعة تشرین- مكلیة العلو -طالب دكتوراه في قسم الفیزیاء ***

mailto:sbdoma@yahoo.com


242 

 

1-INTRODUCTION: 
The basic modes of excitations of nuclei are known in low-energy nuclear 

structure physics, namely single-particle and collective excitations. The later can be 
either vibrational motions (of spherical or deformed nuclei) or rotational motion (of 
prolate or oblate shaped ellipsoids). Since the different kinds of excitations lead to 
distinctively different patterns or sequences of excited levels we can obtain information 
on the nuclear structure of a specific isotope by measuring its excitation scheme. The 
structure depends on the interplay between protons and neutrons, and thus we finally test 
the strong nuclear force by comparing our model calculations with the experimental 
results. 

Many properties of nuclei can be described in terms of a model of independent 
particles moving in an average potential whose space dependence closely follows the 
matter distribution. With unfilled shells, we find additional correlations between these 
particles. In the Bardeen, Cooper, and Schrieffer (BCS) model [1] we treat these 
correlations in a generalized single-particle picture by introducing quasi-particles and a 
new type of field, the pairing potential. 

The Hartree-Fock-Bogoliubov (HFB) theory [1] generalizes and unifies both 
methods. Within this theory we look for the most general product wave functions 
consisting of independently moving quasi-particles.They are determined by a variational 
principle and take into account as many correlations as possible staying within a static 
single-particle picture. It turns out that within this approximation, the Hamiltonian 
reduces to two average potentials, the self-consistent field G , which are already known 
from the Hartree-Fock theory, and an additional pairing field D , known from the BCS 
theory. The field G   contains all the long range particle hole (ph)-correlations which 
eventually lead to a deformed ground state (phase transition). On the other hand, D sums 
up the short-range pairing correlations that can lead to a phase transition and a superfluid 
state. 

The collective description of the octupole degree of freedom has been a long 
standing problem in nuclear physics[2]. The theoretical calculations predicted the 
existence of octupole stable deformations[3]. The features observed in nuclei are very 
similar to the once familiar from molecular physics. In molecules a stable octupole 
deformation leads to the appearance of rotational bands with the alternating parity levels 
connected by strong E1 intra-band transition[4].The nuclear structure community has 
devoted considerable theoretical and experimental effort to the study of the strong 
octupole correlation effects that are manifest only in the specific region of the periodic 
table. The octupole deformation can be understood through the single-particle level 
energy sequence for a harmonic-oscillator potential. In certain cases, an orbit is lowered 
into the next lowest major shell by the 2l  and s.l terms, these intruder orbits can be 
strongly coupled by the octupole interaction. And the effect of octupole deformation on 
single particle levels is related to the octupole correlations[5]. There are some empirical 
indications that nuclei situated at certain regions can be even considered as reflection 
asymmetric in their ground states in agreement with a variety of model estimates. 
The octupole correlation is quite strong and very important in heavy nuclei. In this paper 
we investigate the octupole deformation of the two nuclei Pb209

82 , Bi209
83 . 
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2-OCTUPOLE DEFORMATION: 
It is well known that the surface of the nucleus can be expand into spherical 

harmonics[6] 

   (2.1)               )),(1(),( 0 å+=
lm

lmlm jqjq YaRR  

λ=1 corresponds to dipole vibration, λ=2 corresponds to quadrupole vibration,  
λ=3 corresponds to an octupole vibration. 
An octupole-deformed surface is given by 

(2.2)              ) ),(1(),( 330 å+=
m
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if we impose the axial symmetry (2.2) becomes  
(2.3)               )),(1(),( 30300 jqjq YaRR += .  

For 3030 .=a  and 10 =R  we can see that this surface looks like a pear so 
that the octupole-deformed nuclei are often called pear-shaped nuclei. 
To describe this case we use  Hamiltonian[7] 

(2.4)              QQps HHHH ++=  
where H s  is the spherical single particle potential (Nilsson potential at 
zero deformation with corresponding single-particle energy Ek) 

(2.5)            )aaaa(E kkkk
k

ks
++ += åH  

where k refer to the spherical harmonic oscillator state mjln ,,, ,   
1-++ = TTaa kk .  

The Hamiltonian Hp  are theoretical range pp-correlations[8] 
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The last part are long-range ph-correlations defined by  
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in equation (2.9) 30
klq  are single-particle matrix elements in the spherical 

basis: 
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Initially, only octupole deformation of the Y3 0  type where considered.  
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3-HARTREE-FOCK-BOGOLYUBOV SOLUTION 
We assume that our vacuum is S-Symmetric (nuclei preserves the 

deformed average field with respect to reflections in planes perpendicular 
to the intrinsic axes 1 and 2) we obtain 
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The self consistent HFB problem is solved by means of the 

Bogolyubov transformation form spherical particle operator :, ii aa +  

(3.4)                                           )aBaA(

)aBaA(

k
i
k

k
k

i
ki

k
i
k

k
k

i
ki

+=

+=

å

å
+a

a

 

by substituting the equations (3.4) in the equation (3.1) we get the 
equation 

(3.5)                                          20110 HHHH ++=HFB  
and  using  variation principle [9] 
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The variation principle leads to the following system of equations for the 
amplitudes i

k
i
k

i
k

i
k BABA   and ,,  for the corresponding quasiparticle energy E i  
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4-CALCULATIONS 
The HFB variational principle leads to the following single-particle 
Hamiltonian )1(h  
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In equation(4.1) E is the energy difference between the spherical single-
particle energies of two orbitals, 3x  is the octupole interaction strength, 
and 
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By applications of the Wigner-Echart theorem[1] to the term 
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are Wigner 3j  symbols.  

 
In equation(4.1) 0f  given by 
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we use Nilsson model to calculate E the energy difrence between the 
spherical single-particle energies 
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5-RESULTS AND CONCLUSIONS 
 

The only state observed in the nucleus with A=209 are single-
particle and single hole states. The experimental study of the 2 0 9Bi(d 
3He)2 0 8Pb reaction found to populate the -= 3pI  state in the nucleus 2 0 8Pb 
and that the process involve pickup of a 

2
3d proton[11]. 

In our calculations we have used values of the oscillator parameter, 
which depend on the mass number A, the number of neutrons N and the 
number of protons Z as follows [13] 

(5.1)               

])(191.0646.11[
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23
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In Table-1 we present the calculated values of the matrix elements of 3r ,  
and 3K for each transition of the two nuclei 2 0 9Bi and 2 0 9Pb. 
The calculated values of the energy splitting are also given in this table. 
In Figures-1 we present the calculated and the corresponding energy 
splitting for the two nuclei 2 0 9Bi and 2 0 9Pb, respectively. In Figures-2 (a, 
b, and c) we present the variations of the octupole coupling with respect 
to the interaction strength for each nucleus. 
The results of the calculations for octupole coupling of 

2
3

2
9 dh ® and 

2
9

2
13 hi ®  of the 2 0 9Bi nucleus have been in  good agreement with the 

experiment for octupole strength 1.017 MeV fm -6 ,  the addition of an 
octupole quantum 

2
9

2
13 hi ® to the ground state of 2 0 9Bi is expected to give 

rise to a septuplet of states [12] Ih )3  (
2
9

-  with 
2

15,.......,
2
5,

2
3

=I .  

The observed small splitting of the multiplet components implies a weak 
coupling between odd proton and the octupole quantum, here it  is only 
15% for octupole strength 1.017. 
For 2 0 9Pb, the coupling matrix element between the 

2
9

2
15 g and  j   

configuration has the value -0.88MeV at the strength 0.02. 
 
Nucleus Transition 

22
3

11 r lnln  

    3fm  

)(3 mk  )(keVED  

2 0 9Pb 
2
9

2
15 gj ®  253.5 -10.71 58 

2 0 9Bi 
2
3

2
9 dh ®  341.2 2.96 69 

2 0 9Bi 
2
9

2
13 hi ®  233.5 -0.44 151 
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fig (2)pointed out that the energy splitting h is very sensitive to the 
chosen octupole strength. 
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