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  ABSTRACT    

 
In this paper, we study KC-spaces; these are the spaces in which every compact 

subset is closed. Then we introduce the concept of minimal KC-spaces and we study the 

relation between minimal KC-spaces and minimal Hausdroff spaces. Finally, we introduce 

a new concept of minimal LC-spaces. Most of the theorems which are valid for minimal 

KC-spaces will also be valid for minimal LC-spaces. 
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 الأصغرية LCالأصغرية وفضاءات  KCفضاءات 
 
 

 *محمد عمي إبراهيماضي الدكتور ر 
 

 
 (2/6/2005)قبل لمنشر في  

 
 الممخّص  

 
كانتت كتل مجموعتة متراصتة فيته مجموعتة مغمقتة ويقتال عنته  إذا KCنه فضاء إ (X,)يقال عن فضاء تبولوجي 

لقتتد نمنتتا فتتي بتتذا البةتت  بدراستتة و كتتل فضتتاء لنتتدلو  جز تتي منتته يشتتكل مجموعتتة مغمقتتة فيتته    كتتان إذا LCنتته فضتتاء إ
الأصتغرية ودرستنا العةنتة بتين فضتاءات  LCالأصغرية و فضتاءات KC ثم ندمنا فضاءات  LCو فضاء  KCء فضا

تكتتتون  KCالأصتتتغرية ثتتتم بينمتتتا لن معجتتتم النتتتتا ا المتةققتتتة فتتتي ةالتتتة فضتتتاءات  KCباوستتتدور  الأصتتتغرية وفضتتتاءات 
  LCمتةققة في ةالة فضاءات 
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1. Introduction:   
              

Let R be a topological property, X be a nonempty and let R (X) denote the set of all 

topologies on X having the property R. R (X) is partially ordered by set inclusion. (X,) is 

minimal R (R-minimal) if  is minimal in R (X). In [1] there is a good survey on minimal 

topologies and it stated there that every compact Hausdroff is minimal Hausdroff. In this 

paper we show that compact KC-space is minimal KC-space.     

In this section we recall the basic facts concerning  KC-spaces.  

          

Definition 1.1 [2]:  

Let (X,) be a topological space, we say that (X, ) is a KC- space if every compact 

subset of is a closed in X. 

 

Remarks and Examples 1.2:  

1. Every Hausdroff space is a KC-space for example (R, u) is a KC-space (where u is the 

usual topology on R).  

2. (R, cc) is a KC-space but not a Hausdroff space (where cc is the co-countable 

topology on R)  

3. Every KC-space is a T1-space. So we have the following diagram  

T2-space  KC-spaces   T1-space 

4. (R, c) is a T1-space which is not a KC-space (where c is the co-finite topology on R)  

5. Let X be a finite set then X is a KC-space iff X is a T1-space. 

6. Every continuous function from a compact space into a KC-space is a closed function. 

 

Proposition 1.3:  
Let X be a locally compact space then X is a KC-space iff X is a T2-space. 

Proof:  
Suppose that X is a KC-space, since X is a locally compact, then every neighborhood 

of x  X contains a compact neighborhood of x (some authors define locally compact in a 

different way).Hence the family of compact neighborhood of x in X will be a local base at 

x  X, but X is a KC-space. Thus the family of closed neighborhood of x  X will be a 

local at x  X. Therefore X is a regular, but X is a T1-space then X is a T3-space which 

implies that X is a T2-space. The converse is clear. 

 

2. Properties of KC-spaces: 
               

In this section we state and prove several properties of KC-spaces. 

 

Remark 2.1: The continuous image of KC-space is not necessarily a KC-space as shown 

by the following example: consider R: (R, u)  (R, i), where R is the identity function 

on R. Now (R, u) is a KC-space but (R, i) is not KC-space, where i is the indiscrete 

topology on R. 

 

Proposition 2.2: If f: X  Y is a continuous injective function from X into a KC-space Y 

then X is KC-space, too. 
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Proof: Let W be any compact subset of X then f (W) is compact subset in Y. Since Y is 

KC-space, f (W) is closed subset of Y, see [3]. Therefore f  (f (W) ) = W is closed subset of 

X, because f is continuous injective function. Thus X is KC-space.  

 

Proposition 2.3: The property of being KC-space is a topological property.  

Proof: Let (X,x) be a KC-space, f: (X,x)  (Y, Y) be a homeomorphism and let W be 

any compact subset of Y, then f  (W) is compact in X, but X is a KC-space, so f  (W) is 

closed in X then f(f  (w) ) =W is closed in Y. Therefore Y is a KC-space. 

    

Proposition 2.4: The property of being KC-space is a hereditary property.  

Proof: Let (X,x) be a KC-space, (Y, Y) be a subspace of X, and let A  Y be any 

compact subset in Y, then A is compact in X, but X is a KC-space. Therefore A is closed in 

X. Thus A  Y = A is closed in Y; hence Y is a KC-space.               

 

3. Minimal KC-Spaces:  

          

In this section, we introduce the concept of minimal KC-space 

First we recall the definition of minimal T2-space. 

              

Definition 3.1 [4]: Let (X,) be a T2-space, we say that (X,) is a minimal T2-space 

(minimal Hausdroff space) iff *   implies (X,*) is not a T2-space, (we will use MH to 

denote minimal Hausdroff space). 

 

Definition 3.2: Let (X,) be a KC-space, we say that (X,) is a minimal KC-space  

iff *   implies (X,*) is not a KC-space, (we will use MKC to denote minimal KC-

space). 

 

Theorem 3.3: Every compact KC-space is a MKC.  

Proof: Let (X,) be a compact KC-space. Suppose X is not    MKC i.e. there is a topology 

*   on X such that (X,*) is        KC-space. Let x  : (X,)  (X,*) be the identity 

function on X. x is a continuous, bijective and closed function, hence x is a 

homeomorphism implies that * =   which is a contradiction so (X,) is MKC. 

 

Examples 3.4: 

 1. Consider  = [0 , 1] in (R, u).  is a T2-space so  is a KC-space. Since  is a compact 

space then, by theorem 3.3,   is a MKC. 

2. Let X be a nonempty finite set then (X,d) is MKC (where d discrete topology on X).       

 

Remark 3.5: The continuous image of MKC is not necessarily MKC, as shown by the 

following example, let X be a nonempty finite set and let x : (X,d)  (X,i) be the 

identity function on X. (X,d) is MKC but (X,i) is not MKC. 

 

Proposition 3.6: The property of being MKC is a topological property.  

Proof: Let (X,x) be a MKC-space, f: (X,x)  (Y, Y) be a homeomorphism. Notice that 

(Y, Y) is a KC-space and suppose that (Y, Y) is not a MKC, then there exists a topology 

*Y  Y such that (Y, *Y) is a KC-space. Define 1 = {f   (V): V *Y}, 1 is a 

-1 

-1 
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topology on X and 1  x and (X, 1) is a KC-space which is a contradiction with X is a 

MKC. Hence (Y, Y) is a MKC. 

 

Theorem 3.7: Let (X,x) be a compact KC-space, and (Y, Y) be a subspace of X, then Y 

is compact iff Y is a closed set in X. 

Proof: Suppose Y is compact, since X is KC-space then Y is closed. Conversely, suppose 

Y is a closed in X then Y is compact because X is compact. 

 

Corollary 3.8: Let (X,x) be a compact KC-space, then every closed subspace of X is 

MKC.  

 

Proposition 3.9: Every locally compact MKC is MH.  

Proof: Let (X,x) be a locally compact MKC-space, so X is a locally compact KC-space, 

hence X is a T2-space. Suppose X is not a MH-space, so there exists a topology * on X, 

*    and (X,*) is a T2-space implies that (X,*) is a KC-space which is a contradiction. 

Therefore (X,) is MH. 

 

Proposition 3.10: Suppose X1 x X2 is a compact KC-space, then each of X1, X2 is a 

MKC-space. 

Proof: Since X1 x X2 is a compact then each of X1, X2 is a compact, too. Let x*2 be a 

fixed element in X2, X1 x {x*2} is a subspace of X1 x X2, therefore X1 x {x*2} is a KC-

space. But X1 is a homeomorphic to X1 x {x*2} implies that X1 is a KC-space. Thus X1 

is a compact KC-space, by using theorem 3.3 X1 is MKC-space. Similarly we can show 

that X2 is a MKC-space.   

We can generalize above result to finite product X1 x X2 x…x Xn and to arbitrary 

products as follows:  

 

Theorem 3.11: Let ={X:   Ω} be any family of topological spaces. If X=  X is a 

compact KC-space, then each X is a MKC-space for each   Ω.  

Proof: Let *  Ω we will show that X* is MKC-space. Since   X=  X is a compact 

and the projection P: X X is continuous function and the continuous image of the 

compact is compact, then X is compact, in particular X*is compact. Now, define Y= 

Y where   

 
Where x* is a fixed point in X. Y is a subspace of X so Y is a KC-space. Since 

X* is homeomorphic to Y then X* is a KC-space and by using theorem 3.3 X* is 

MKC-space. Because of * is arbitrary, therefore, X is a MKC-space.   

 

4. Minimal LC-Spaces:  

             

In this section, we introduce a new concept, namely minimal LC-space. First, we 

recall a few definitions and facts concerning LC-space.  

Definition 4.1 [2]: Let (X,) be a topological space we say that X is LC-space if every 

Lindelöf subspace of X is closed in X.  

-1 
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Remarks and Examples 4.2:  
1. Every LC-space is a KC-space, hence every LC-space is a T1-space, i.e. 

LC 

 

T2       KC       T1 

2. Every T2-p-space is LC-space (where p-space is the space in which countable 

intersection of open sets is open set.) 

  

Proposition 4.3: Every locally compact LC-space is a T2-space. 

Proof: Let X be a locally compact LC-space, then X is a locally compact KC-space. Hence 

X is a T2-space.  

 

Remark 4.4: The continuous image of LC-space is not necessarily LC-space as shown by 

the following example. Consider R: (R, d)  (R, i) is the identity function on R, notice 

that (R, d) is a LC-space but (R, i) is not LC-space.  

 

Proposition 4.5: If f: X  Y is a continuous injective function from X into a LC-space Y 

then X is LC-space, too. 

Proof: Let W be any Lindelöf subset of X then f (W) is Lindelöf subset in Y. Since Y is 

LC-space, f (W) is closed subset of Y, see [4]. Therefore f  (f(W) ) = W is closed subset of 

X, because f is continuous injective function. Thus X is LC-space.  

 

Proposition 4.6: The property of being LC-space is a topological property.  

Proof: Let (X,x) be a LC-space, f: (X,x)  (Y, Y) be a homeomorphism and let A  Y 

be a Lindelöf subset. Since f 
-1

(A) is a Lindelöf subset of X and X is LC-space, then f 
-1

 (A) 

is closed in X. Thus, f (f  
-1

 (A)) = A is closed in Y, therefore, Y is LC-space.   

 

Proposition 4.7: The property of being LC-space is a hereditary property.  

Proof: Let (X,x) be a LC-space, (Y, Y) be a subspace of X and let A  Y be a Lindelöf 

subset of Y. Therefore, A is a Lindelöf subset of X, implies that A is closed in X because X 

is a LC-space. But A = A  Y is closed in Y i.e. Y is a LC-space.   

Now, we introduce the definition of minimal LC-space. 

 

Definition 4.8: Let (X,) be a LC-space we say that X is a minimal LC-space (MLC) 

 iff *    implies (X,*) is not LC-space. 

 

Theorem 4.9: Every Lindelöf LC-space is a MLC. 

Proof: Let (X,) be a Lindelöf LC-space and suppose (X,) is not MLC, then there is a 

topology * on X such that *    and (X,*) is LC-space. Let x  : (X,)  (X,*) be the 

identity function on X.  x is a continuous, bijective and closed function then x  is a 

homeomorphism which implies that *   , but this is a contradiction, so (X,) is MLC.  

 

Example 4.10: Let X be a countable set, then (X, d) is a MLC. 

 

-1 
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Remark 4.11: The continuous image of MLC is not necessarily MLC, as shown by the 

following example: Let X a countable set and let x : (X,d)  (X,i) be the identity 

function on X. (X,d) is MLC but (X,i) is not MLC. 

 

Theorem 4.12: The property of being MLC-space is a topological property.  

Proof: Let (X,x) be a MLC-space, f: (X,x)  (Y, Y) be a homeomorphism. Notice that 

(Y, Y) is LC-space and suppose it is not MLC then there exists a topology *Y on Y such 

that *Y  Y and (Y, Y) is LC-space. Define *x = {f (A): A *Y}, *x is a topology 

on X, *x   x and (X,*x) is a LC-space which is a contradiction. Hence (Y,Y) is a 

MLC.  

 

Theorem 4.13: Let (X,x) be a Lindelöf LC-space and let (Y, Y) be a subspace of X then 

(Y, Y) is a Lindelöf iff Y is closed in X. 

Proof: Suppose (Y, Y) is a Lindelöf space, but X is LC-space therefore Y is closed in X. 

Conversely, suppose (Y, Y) is closed in X, but X is Lindelöf space, then Y is also 

Lindelöf space.   

 

Corollary 4.14: Let (X,x) be a Lindelöf LC-space and let       (Y, Y) be a closed 

subspace of X then (Y, Y) is a MLC. 

 

Theorem 4.15: Let X1 x X2 be a Lindelöf LC-space, then each of X1, X2 is a MLC-space. 

Proof: Let x*2 be any fixed element in X2.Then X1 x {x*2} is a subspace of X1 x X2, by 

proposition 4.7, X1 x {x*2} is a LC-space. But X1 x {x*2} is homeomorphic to X1, by 

proposition 4.5, X1 is    LC-space, too. Therefore, by proposition 4.9, X1 is MLC.   

             

The above theorem can be generalized to finite product and arbitrary product as 

follows. 

 

Theorem 4.16: Let ={X:   Ω} be any family of topological spaces. If X=  X is a 

Lindelöf LC-space then each X is     MLC-space for each   Ω. 

Proof: Let *  Ω we will show that X* is MLC-space. Since   X=  X is a Lindelöf 

and the projection P: X X is continuous function and the continuous image of the 

Lindelöf is Lindelöf, then X is Lindelöf, in particular X*is Lindelöf. Now, define Y= 

Y where   

 

 
 

Where x* is a fixed point in X. Y is a subspace of X so Y is a LC-space. Since 

X* is homeomorphic to Y then X* is a LC-space and by using theorem 4.9 X* is 

MLC-space. Because of * is an arbitrary, therefore, X is a MLC-space.  

 

 

 

-1 
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5. Open problems:  
 

In this section we are going to establish some open problems arise, concerning the 

minimal KC-space and minimal LC-space, 

1. Under what conditions the continuous image of minimal KC-space is minimal 

KC-space, too. 

2. Under what conditions the continuous inverse image of minimal KC-space is 

minimal KC-space, too. 

3. Under what conditions the continuous image of minimal LC-space is minimal 

LC-space, too. 

4. Under what conditions the continuous inverse image of minimal LC-space is 

minimal LC-space, too. 
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