2007 (1) مجلة جامعة تشرين للدراسات والبحوث العلمية _ سلسلة العلوم الأساسية المجلد (29) العدد (1) Tishreen University Journal for Studies and Scientific Research-Basic Sciences Series Vol. (29) No. (1) 2007

التحليل التماكبي، والخواص الترموديناميكية للجزيئات 2 – هالوجينات X = F, Cl, Br الإيتانال X = F, Cl, Br حيث Ab inito باستخدام طرائق

الدكتور محمد عبد الحكيم بدوي* الدكتور ياسر موسى **

(تاريخ الإيداع 31 / 10 / 2006. قُبِل للنشر في 2007/4/11)

🗆 الملخّص 🗆

تم تحديد البنى الهندسية المتلى لـ 2 – هالوجينات الايتانال XCH₂CHCHO بمساعدة الطرائق الميكانيكية الكمومية Ab initio باستخدام التوابع الأساسية (b)6-31G(d)، و(d,d, ++G(d,p)، في الحاقة من المماكب BLYP3/6-31G(d). تبين أنه في حالة F = X، يتمتع الجزيء بمماكبين cis و trans، ويُعدُ المماكب trans أخفض في الطاقة من المماكب cis، في حين أن الجزيئات الأخرى (أي K = Cl, Br) فإن المماكب الأخفض في الطاقة يمثل المماكب gauche، وإن المماكب trans لحين أن الجزيئات الأخرى (أي gauche و تعمد المحاكب الأخفض من التشكيل cis في الطاقة. حددت المعاملات الفراغية، والتواترات الاهتزازية والخواص الترموديناميكية من أجل جميع المماكبات المحتملة لهذه الجزيئات. على أساس هذه الدراسات تم تحديد سطوح الطاقة الكامنة للدوران الداخلي حول الرابطة المركزية C – C لهذه الجزيئات باستخدام التوابع الأساسية (b)6-31G(d) الحسابية. في جميع الحالات، قدر الفرق في الطاقة بين المماكبات وكذلك الحواجز التوابع الأساسية (b)6-31G(d) الحسابية. في جميع الحالات، قدر الفرق في الطاقة بين المماكبات وكذلك الحواجز التوابع الأساسية (b)6-31G(d) ولائيات باستخدام

الكلمات المفتاحية: التماكب، المجموعة الأساسية، المعاملات الفراغية، الحاجز، الدوران الداخلي، التشكيل الفراغي، التوابع الكمونية، الطرائق Ab initio.

> * أستاذ مساعد في قسم الكيمياء – كلية العلوم – جامعة تشرين – اللاذقية – سورية. أستاذ مساعد في قسم الكيمياء – كلية العلوم – جامعة تشرين – اللاذقية –سورية.

مجلة جامعة تشرين للدراسات والبحوث العلمية _ سلسلة العلوم الأساسية المجلد (29) العدد (1) 2007 (1) Tishreen University Journal for Studies and Scientific Research-Basic Sciences Series Vol. (29) No. (1) 2007

The Conformational Analyses and Thermodynamical Properties of 2 – Halogen Ethanals XCH₂CHO, Where X = F, Cl and Br Using Ab Initio Methodes

Dr. M. Abd Al H. Badawi^{*} Dr. Y. Muosa^{**}

(Received 31 / 10 / 2006. Accepted 11/4/2007)

\Box ABSTRACT

The optimal geometric structures for 2-halogen ethanals XCH₂CHO have been investigated using high level Ab Initio with basis sets 6-31G(d), 6-311++G(d,p) and BLYP3/6-31G(d). It is shown that, in case X = F, the molecule has two conformers: -cis and -trans, where the trans-conformer is lower than cis-conformer in energy. However, in case X = Cl and Br, the conformer, whish has lower energy, is gauche – conformer, and the trans - conformer, whish is accorded the maximum respected to gauche – conformer, is lower than cis-conformer in energy. The geometric parameters, thermodynamical properties, harmonic vibrational frequencies and infrared intensities for all possibly conformeres are reported. Based on this study, the potential functions of internal rotation around C – C central bond on ground states of this molecules have been performed using HF/6-31G(d) basis sets calculations. In all cases, the differences in energy between two conformers and the barrier of internal rotation have been calculated.

Key Words: Isomerazation, Basis sets, Geometric parameters, Barrier, Internal rotation, conformation, Potential functions, Ab initio Methods.

^{*} Associate Professor, Department of Chemistry, Faculty of sciences, Tishreen University, Lattakia, Syria.

^{**} Associate Professor, Department of Chemistry, Faculty of Sciences, Tishreen University, Lattakia, Syria.

مقدمة:

تستدعي دراسة الدوران الداخلي والتماكب الدوراني للجزيئات لأهمية كبيرة، لأن هذه الظواهر تؤثر بدرجة كبيرة في سلسلة من الخصائص الهامة للجزيئات والمواد [1-3]، منها: الخواص الترموديناميكية، والخواص الضوئية، القدرة التفاعلية (من ضمنها النشاط البيولوجي)، آلية التفاعلات الكيميائية (من ضمنها الكيميائية الضوئية)، وغيرها. أضف إلى ذلك، تتحصر الأهمية التطبيقية والنظرية في دراسة مسألة الطبيعة الفيزيائية للكمونات الفتلية [4 - 7]. يتطلب التنبؤ بخصائص الجزيئات والمواد المرتبطة بالدوران الداخلي والتماكب الدوراني معرفة شكل سطح الطاقة الكامنة للجزيء، أو التوابع الكمونية للدوران الداخلي للجزيء. في وقتنا الحاضر، من أجل الحصول على هذه المعطيات يستخدم سلسلة من الطرائق التجريبية والحسابية. بمساعدة الطرائق التجريبية انظر على سبيل المثال [9,8]، يمكن الحصول على التوابع الكمونية للدوران الداخلي للجزيء. في وقتنا الحاضر، من أجل الحصول على هذه المعطيات يستخدم سلسلة من الطرائق التجريبية والحسابية. بمساعدة الطرائق التجريبية انظر على سبيل المثال [9,8]، يمكن الحصول على التوابع الكمونية الدوران الداخلي للجزيء. في وقتنا الحاضر، الذي المثال المعلية الموليا المثل المثلية الموانية الدوران الداخلي المولية المولية الموليا على هذه المعطيات المعطيات المولية الدوران الداخلي للجزيء. في وقتنا الحاضر، من أجل الحصول على هذه المعطيات يستخدم سلسلة من الطرائق التجريبية والحسابية. بمساعدة الطرائق التجريبية انظر على سبيل المثال الموليا المولية الدوران الداخلي للجزيئات، ولكن تم الحصول على هذه الموران الداخلي للجزيئات، ولكن تم الحصول على هذه الموليا التوابع الكمونية الدوران الداخلي للجزيئات، ولكن تم الحصول على التوابع الكمونية للدوران الداخلي للجزيئات، ولكن تم الحصول على المؤليات

Ab تصنف الطرائق الحسابية النظرية المستخدمة عادة في هذا المجال إلى ثلاثة طرائق: ميكانيكية غير اختبارية Ab المتار initio [11,10,7]، وميكانيكية نصف اختبارية [10-14]، وكذلك ميكانيكية اختبارية [15-17]. من الجدير الإشارة إلى أنه في الطرائق Ab initio ظهرت نظرية حديثة يطلق عليها DFT (Density Functial Theory) DFT)، واعدت برامج خاصة تعتمد على هذه النظرية وتقريباتها المتنوعة، وتبين أن دقتها أفضل بكثير من دقة نظرية هارتري – فوك (HF) [20]، ولكنها تتطلب فترة زمنية أطول من طريقة HF.

لقد اخترنا في هذا العمل جزيئات هالوجينات أسيد ألدهيد XCH₂COX، حيث X = F, Cl, Br، من أجل دراسة التماكبات الممكنة لهذه الجزيئات وتحديد التواترات الاهتزازية، والخواص الترموديناميكية الموافقة للبنى الهندسية المستقرة، بالإضافة إلى تحديد سطوح الطاقة الكامنة للدوران الداخلي حول الرابطة المركزية C – C لهذه الجزيئات.

هدف البحث:

إن الطرائق الميكانيكية الكمومية تمثل الوسيلة الهامة والفعالة، التي تساعد الكيميائي في تأويل معطياته التجريبية في مختلف مجالات الكيمياء. فضلا عن ذلك، يهتم الكيميائيون العضويون بتحديد المماكبات الأكثر استقرارا للجزيئات، والحاجز الطاقي فيما بينها. وهناك بعض الجزيئات، لا يمكن تحديد مماكباتها المستقرة بالطرائق الطيفية، دون اللجوء إلى الحسابات الميكانيكية الكمومية. ولقد اخترنا مجموعة من الجزيئات المذكورة أعلاه، التي تبدي دورانا داخليا حول الرابطة C - C، وقمنا بتحديد المماكبات المستقرة، ومعاملاته الفراغية (أطوال الروابط، والزوايا فيما بينها)، وبعض خصائصها الفيزيائية الهامة (التواترات الاهتزازية، والحواجز الطاقية وغير ذلك)، التي تُمكّن الكيميائي العضوي بتفسير معطياته الطيفية التجريبية، ومتابعة دراساته اللاحقة لهذه الجزيئات. وهنا يكمن هدف هذا البحث وأهميته من الناحية النظرية والتطبيقية. وتجدر الإشارة إلى أنه سنبين في أعمال لاحقة أهمية هذه المعطيات بدراستنا للأطياف الجزيئية لهذه البخرية

الطرائق الميكانيكية وأنماط المدارات المستخدمة:

تم إجراء الحسابات بمساعدة البرنامج PC GAMSSE [22,21]:

General Atomic and Molecular Electronic Structure System

الذي يعمل على نظام الميكروسوفت وذلك باستخدام الطرائق التالية: طريقة هارتري – فوك (HF) Ab initio: باستخدام مجموعة التوابع القواعدية (d)6-31G و G(d,9++G(d,p)6-311-6 [24-23]، وطريقة تابعية الكثافة DFT: (d)BLYP3/6-31G [24-23] من أجل تحديد التمثيل الفراغي الأمثل (التشكيل الفراغي المتوازن)، والطاقة الكلية، والتواترات الاهتزازية، بالإضافة إلى الخواص الترموديناميكية لهذه الجزيئات. فمن أجل تحديد منحنيات تغير الطاقة الكامنة للدوران الداخلي لهذه الجزيئات استخدمنا الطريقة (d)

التمثيل الفراغي الأمثل (النهاية الصغرى للطاقة): Geometry Optimization (Energy Minimization)

إن معظم العمليات الرياضية (اللوغاريتمية) تستطيع أن تحدد موضع النهاية الصغرى لتابع لعدة متغيرات، فمثلاً، تبحث هذه العمليات عن النهاية الصغرى للطاقة U بجوار التشكيل الفراغي البدائي المعطى، وتدعى مثل هذه العمليات بالبحث عن التمثل الفراغي الأمثل (Geometry Optimize) أو بالبحث عن النهاية الصغرى للطاقة (Energy) (Minimization). فمن أجل الجزيئات المتمتعة بممكبات مختلفة تقوم هذه العملية بالبحث عن جميع هذه التشكيلات المتوازنة، أي تستطيع أن تحدد جميع النهايات الصغرى لكل مماكب للجزيء. أضف إلى ذلك، قد تتمتع المماكبات بتناظر محدد، وبالتالي فإن هذه العملية تقوم بالحفاظ على تناظر المماكب إذا كان تشكيله البدائي المعطى في بداية الحساب متناظراً. وهناك عمليات أخرى تقوم بمثل هذه الإجراءات ولكن تستخدم المشتق الأول للطاقة بالنسبة إلى جميع الإحداثيات الفراغية الحري، وندعى هذه العملية بتدرج الطاقة لا (gradient of energy):

grad
$$U = \nabla U(x, y, z) = \mathbf{i} \frac{\partial U}{\partial x} + \mathbf{j} \frac{\partial U}{\partial y} + \mathbf{k} \frac{\partial U}{\partial z}$$
 (1)

ويكون هذا التدرج مساويا للصفر عند النهاية الصغرى للطاقة، نعني بذلك أنه من أجل كل إحداثية عادية ويكون هذا المشتق الجزئي الأول للطاقة U يساوي الصفر. وبالتالي فإن أية نقطة على منحني الطاقة الكامنة (3 - 6 فإن المشتق الجزئي الأول للطاقة U يساوي الصفر. وبالتالي فإن أية نقطة على منحني الطاقة الكامنة (esc: Pes: Potential-Energy Surface) حيث عندها يكون التدرج مساوياً للصفر تمثل نقطة مستقرة، وقد تكون هذه النقطة على PES rotential-Energy Surface) حيث عندها يكون التدرج مساوياً للصفر تمثل نقطة مستقرة، وقد تكون هذه النقطة على PES: Potential-Energy Surface) النقطة على PES rotential-Energy Surface وتعتمد أيضا بعض الطرائق للحصول على النهاية الصغرى للطاقة على المشتق الثاني للطاقة U بالنسبة إلى جميع الإحداثيات العادية 6 - N، حيث يتم جمعها بمصفوفة ندعى على المشتق الثاني للطاقة U بالنسبة إلى جميع الإحداثيات العادية 6 - N، حيث يتم جمعها بمصفوفة ندعى بمصفوفة هيسيان force – Constant matrix القوى force – Constant matrix العادية أو بمصفوفة ثوابت القوى تعتمد على مثل هذه العمليات، إن هذه العملية نيوتن أو نيوتن – رافسون (العملي المنون) من أهم الطرائق التي تعتمد على مثل هذه العمليات، إن هذه العملية نوتن أو محصول أو بمصفوفة ثوابت القوى على مثل هذه العمليات، إن هذه العملية مصفوفة نيوتن أو نيوتن أو بمصفوفة ثوابت القوى تعتمد على مثل هذه العمليات، إن هذه العملية أو بحصول أو بحصفوفة ثوابت القوى أو تحليلا.

يمتل الجدول (1) المعاملات الفراغية لجميع مماكبات الجزيئات المستقرة المدروسة بعد إجراء العملية يمتل الجدول (1) المعاملات الفراغية لجميع مماكبات الجريئات المستقرة المدكورة أعلاه من أجل جميع المماكبات الممكنة لهذه الجزيئات الممثلة في الشكل (1). ويمثل الجدول (2) الطاقة الكلية وعزوم ثنائيات الأقطاب وثوابت الدوران لهذه المماكبات. نلاحظ من هذه المعطيات أن الطاقة المحسوبة وفق للطريئة *332976-316 وثوابت الدوران لهذه المماكبات. نلاحظ من هذه المعطيات أن الطاقة المحسوبة وفق للطريئة *342976-316 وثوابت الدوران لهذه المماكبات. نلاحظ من هذه المعطيات أن الطاقة المحسوبة وفق للطريئة *342976-316 وثوابت الدوران لهذه المماكبات. نلاحظ من هذه المعطيات أن الطاقة المحسوبة وفق للطريئة *362-316 المستندة على الطريئة مما هو عليها في حالة استخدام طريئة هارتري – فوك في كلا الحالتين -665 المستندة على الطريئة المحسوبة وفق للطريئة *365-316 المستندة على الطريئة المحسوبة وفق للطريئة *365-316 المستندة على الطريئة المحسوبة وفق للطريئة المعامية، وكفاحة من عائبة ومكتشفة في معظم الحسابات الميكيانيكية الكمومية، وكفاعدة مستندة على الطريئة المحسوبة كلما كانت الطريئة المستخدمة أدق، وبالتالي تعد الطريئة المستندة على النظرية Trans أدق، وبالتالي تعد الطريئة المستندة على المانية المحسوبة كلما كانت الطريئة المستخدمة أدق، وبالتالي تعد الطريئة المستندة على النظرية المورية من أدق من نك المستندة على المرابة المالية. نلاحظ من فرق الطاقة أن المماكب Trans أخض من ما هو حالة من ناك المستندة على جام، كما ذكرنا سابقا. نلاحظ من فرق الطاقة أن المماكب Trans بنهاية عظمى كما هو من نلك المستندة على جام، كما ذكرنا سابقا. نلاحظ من فرق الطاقة أن المماكب Trans بنهاية عظمى كما هو من ناك المستندة على ماماكب BrCH2010 و 600-2010 أخص من من 2010 أدى الجزيئات مالماك قدمن و أجل الجزيئات ويمني ويتمتع المماكب BrCH2010 أدى أدى ما هو من ناك المستندة مان أدى الماكب BrCH2010 و 600-2010 أدى المرك الشكل (2).

سطح الطاقة الكامنة (أو التابع الكمونى للدوران الداخلى):

The Potential – Energy Surface (PES) (or Potential Function of Internal Rotation)

يتم تحديد الشكل الفراغي للجزييء غير الخطي المؤلف من N نواة من خلال 6-3N إحداثية نووية مستقلة يتم تحديد الشكل الفراغي للجزييء غير الخطي المؤلف من N نواة من خلال $g_1, q_2, \cdots, q_{3N-6}$ وتمثل طاقته الإلكترونية U تابعاً لهذه الإحداثيات، لذلك يدعى التابع U عادة بسطح الطاقة الكامنة (PES) Potential-energy surface (PES) للجزيء. قد تتمتع الجزيئات بعدة نهايات صغرى أو عظمى على منحنى أو سطح الطاقة الكامنة، ولقد ذكرنا أعلاه أن هذه النهايات توافق حالات مستقرة للجزيء.

، X = F, Cl, Br الشكل (1): المماكبات الممكنة لجزيئات هالوجينات أسيد ألدهيد XCH₂COH حيث المماكبات الممكنة لجزيئات هالوجينات أسيد ألدهيد (1): المماكبات المجزيء FCH₂CHO لا يتواجد بشكل Gauche

بدوي، موسى

حيث X = F, Cl, Br باستخدام طرائق Ab inito

XCH2CHO ^(a)	الحزيئات	لمماكيات	المحسوبة	الحزيئية	الفراغية	المعاملات	:(1)	الحده ل
	/		· • • • • • • • • • • • • • • • • • • •	· · · · · · · ·	· — ()— (•(1)	<u> </u>

المعاملات الفراغية	H	HF/6-31G*		HF/6-3	11++G**	(b)	В	3LYP/6-3	$1G^*$
XCH ₂ CHO	X=F	X=Cl	X=Br	X=F	X=Cl	X=Br	X=F	X=Cl	X=Br
Cis-									
XCH ₂ CHO	1 5074	1 5119	1 5107	1 5077	1 5109	1 5122	1 5147	1 5179	1 5153
rC - C	1.3074	1 1808	1 1811	1.5077	1.5107	1.5122	1.2060	1.2038	1.5155
rC = O	1 3515	1 7684	1 9257	1 3484	1 7712	1 9264	1 3709	1 7880	1 9455
rC - X	1.0957	1.0953	1 0955	1.0991	1.0986	1.0969	1 1 1 5 1	1 1 1 4 4	1 1 1 4 6
$rC - H_{aldehyd}$	1.0854	1.0824	1.0812	1.0864	1.0828	1.0811	1.1013	1.0961	1.0945
rC – H	111.157	113.956	113.800	112.170	114.339	113.971	111.593	114.007	113.660
∠CCX	124.442	126.107	126.300	125.259	126.526	126.348	124.585	126.389	126.501
∠CCO	113.801	112.436	112.465	113.146	112.179	112.498	113.220	111.861	111.994
∠CCH _{aldehvd}	109.230	108.880	109.368	108.777	108.568	109.132	108.803	108.850	109.426
∠CCH	109.508	108.575	107.956	109.294	108.534	107.763	110.073	108.757	108.143
∠XCH	121.757	121.457	121.257	121.595	121.295	121.154	122.195	121.750	121.505
∠OCH _{aldebvd}	108.153	107.806	108.243	108.456	108.136	108.9720	107.387	107.421	107.877
∠HCH	0.0000	0.0000	0.0000	0.0000	0.0000	.0000	0.0000	0.0000	0.0000
∠XCCO	180.000	180.000	180.000	180.000	180.000	180.000	180.000	180.000	180.000
∠XCCH _{aldabud}	59.054	58.645	59.190	58.977	58.669	59.493	58.3525	58.399	59.002
/HCCH-ld-bud	120.946	121.355	120.810	121.023	121.331	120.507	121.648	121.602	120.998
Trans-	1.5110	1.5176	1.5176	1.5119	1.5178	1.5200	1.5201	1.5254	1.5242
XCH ₂ CHO	1.1857	1.1839	1.1840	1.1797	1.1787	1.1869	1.2084	1.2069	1.2071
rC - C	1.3641	1.7814	1.9385	1.3628	1.7850	1.9413	1.3832	1.8017	1.9590
rC = O	1.0925	1.0909	1.0902	1.0955	1.0934	1.0914	1.1121	1.1096	1.1092
rC - X	1.0820	1.0794	1.0785	1.0827	1.0797	1.0783	1.0977	1.0930	1.0918
rC – H _{aldebyd}	109.322	112.124	112.055	109.591	111.998	111.8201	109.730	112.215	111.994
rC – H	122.092	120.846	120.741	122.263	121.099	20.804	122.842	121.148	121.059
∠CCX	115.386	116.820	116.9/5	115.345	116.726	117.155	114.337	116.144	116.291
∠CCO	109.894	109.507	109.921	109.830	109.479	109.907	109.620	109.600	110.09/
∠CCH _{aldebvd}	109.243	108.357	107.734	109.007	108.200	107.4951	109.697	108.408	107.7691
∠CCH	122.322	122.334	122.284	122.392	122.173	22.040	122.820	122.708	100.024
∠XCH	80.000	100.927	109.405	180.000	109.307	80.000	100.437	108.330	109.024
/OCH _{aldabud}	0,0000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
/HCH	119 8881	120 311	119 762	119 719	120.096	119 300	120 530	120 497	119 885
	19 888	120.311	119.762	119 719	120.096	119 300	120.530	120.197	119.885
/XCCH-Habit	17.000	120.011	117.702	11)./1)	120.070	119.500	120.000	120.177	119.000
	-	1.5155	1.5109	-	1.5145	1.5125	-	1.5225	1.5151
	-	1.1841	1.1844	-	1.1789	1.1874	-	1.2071	1.2081
Gauche-	-	1.7829	1.9437	-	1.7869	1.9472	-	1.8040	1.9678
XCH ₂ CHO	-	1.0910	1.0908	-	1.0937	1.0921	-	1.1096	1.1094
rC - C	-	1.0779	1.0763	-	1.0779	1.0763	-	1.0910	1.0889
rC = O	-	1.0811	1.0800	-	1.0817	1.0798	-	1.0949	1.0929
rC - X	-	111.526	109.709	-	111.037	109.134	-	111.496	108.880
rC – H _{aldebyd}	-	121.488	122.343	-	121.968	122.532	-	121.840	122.786
$rC - H_1$	-	116.291	115.617	-	116.015	115.700	-	115.607	114.954
$rC - H_2$	-	109.876	110.604	-	110.247	110.952	-	110.084	110.943
∠CCX	-	109.443	110.717	-	109.265	110.652	-	109.428	111.154
∠CCO	-	108.919	108.394	-	108.865	108.026	-	109.138	108.463

∠CCH _{aldehvd}	-	107.659	106.481	-	107.471	106.203	-	107.504	106.135
$\angle CCH_1$	-	122.204	122.033	-	121.999	121.763	-	122.537	122.785
$\angle CCH_2$	-	109.370	110.819	-	109.911	111.696	-	109.128	111.089
/XCH	-	155.000	133.806	-	149.752	130.102	-	153.929	129.868
	-	26.4814	47.112	-	31.778	50.749	-	27.4456	50.398
	-	147.359	166.635	-	152.516	169.668	-	148.721	169.690
	-	92.534	70.125	-	86.591	65.765	-	91.350	66.171
	-	120.878	119.523	-	120.737	118.919	-	121.276	119.293
	-	119.016	117.237	-	118.370	116.514	-	118.795	116.569
∠XCCH _{aldehyd}									
$\angle H_1 CCH_{aldehyd}$									
∠H ₂ CCH _{aldehyd}									
∠H ₁ CCX									
$\angle H_2CCX$									
-									

(a) يعبر عن اطوال الروابط بالانغستروم Å والزوايا بالدرجة، إن المماكبين cis و trans ينتميان إلى المجموعة التناظرية (b) الطريقة المستخدمة هي **HF/++DZV.

الجدول (2) : الطاقة الكلية وعزوم ثنائيات الأقطاب، ثوابت الدوران وقرق الطاقة بين مماكبات الجزيئات المدروسة بعد إجراء العملية

YCH CHO	HF/6-31G			HF/6-311++G		(b)		B3LYP/8-31G		
AUN2UNU	X = F	X = CI	X = Br	X = F	X = CI	X = Br	X=F	X = CI	X = Br	
Cis-XCH ₂ CHO									0.00	
Total Energy	-251.7543	-611.8094	-2722.2569	-251.8339	-611.8826	-2722 2726	-251.0472	613 4178	.2724 0662	
Dipole Moment	3.9398	3.9404	3.8011	4,1678	4.0186	3,9440	3 3406	3 4747	3 2097	
Rotatinol Constant:	10400438205	A MARKAN AND A					0.0100		0.2007	
A	20.08663	15.54499	14.28146	20.45319	15.68341	14.28788	19.48808	15 12209	13 87527	
В	6.19835	3.82419	2.58121	6.08869	3,78914	2.56975	6.04863	3 75150	2 54361	
C	4.87924	3.12778	2.21578	4.83259	3,11007	2 20775	4 75395	3 06310	2 17883	
Trans-XCH ₂ CHO	No Section.	1000000000000	110009546				4110000	0.00015	6.11003	
Total Energy	-251.7583	-611.8116	-2722.2592	-251.8370	-611.8852	-2722 2750	-253 0492	-613 4191	-2724 9876	
Dipole Moment	1.2061	0.8830	0.9939	1,1888	1.0575	1.0756	1 1129	0 7428	0.8544	
Rotatinol Constant:	1.001.00250	1.583585555	0205250053044	10/10/15/24				0.1420	0.0044	
A	40.48951	35.83321	33.77492	40.84275	35,70534	33,57368	39 83392	35 21713	33 15330	
В	4.40082	2.67662	1.81899	4.40218	2.67768	1.81604	4 27242	2 61423	1 78121	
C	4.06975	2.52939	1.74466	4.07304	2 52991	1 74157	3 95521	2 47138	1 70882	
Gauche-XCH ₂ CHO	0.0000-000250	0.00000000	141233-22201	1000000000			0.00021	6.111100	1.70002	
Total Energy		-611.8117	-2722.2599		-611.8854	-2722 2759	4 3	-613 4192	.2722 2750	
Dipole Moment		1.3144	1.9532		1.5965	2,1688		1 5965	2 1688	
Rotatinol Constant:		10.2023-5-1	10085650	1.6				1.0000	2.1000	
A	*	32.75952	25.14230	•	31,40378	24.05080	÷.	31,89197	23 45907	
В	•	2.71339	1.92976		2,73538	1.94732		2 65455	1 91680	
C	-	2.57929	1.86463	. B.	2.60497	1.88075		2.52540	1.85053	
AE=E(cis) - E(trans)								2001 TT 1 0 T		
Hartree	0.004	0.0022	0.0023	0.0031	0.0026	0.0004	0.0000	0.0040	0.0000	
Cal/mol	2510.04	1380 52	1443 27	1045 28	1631 53	1508.024	4277.7	0.0013	0.0023	
AE=E(cis) - E(gauche)	2010.04	TOUD.OL	1440.27	1040.20	1031.33	1300.02	12/1./	013,195	1400.5	
Hartree		0.0023	0.0030		0.0028	0.0022		0.0044	0.0040	
Cal/mol		1443.27	1882 53		1757 02	2070 78		0.0014	0.0013	
		1345.21	1002.00		1101.03	2010.78	1	0/0.51	815.76	

.Geometry Optimize

(a) يعبر عن الطاقة بالهارتري hartree = 627.510 kcal mol، عزوم العطالة بالديباي Debye وثوابت الدورران GHz.
 (b) استخدمنا من أجل هذه المماكيات الطريقة "HF/++DZV.

يتحدد تماكب الجزيء بحسب القيمة المعطاة لزاوية ثنائية السطح حول الربطة الأحادية، فمثلا يمكن التعبير عن الطاقة بدلالة الزاوية الثنائية السطح (ي كل تماكب يوافق النهاية الصغرى يدعى بالمماكب، فمثلا في حالة الجزيئات المدروسة تبين الحسابات أن هذه الجزيئات تتواجد بشكل cis (حيث $^{00} = 0 \times 2 \times 2$) و trans (حيث الجزيئات المدروسة تبين الحسابات أن هذه الجزيئات تتواجد بشكل cis (حيث $^{00} = 0 \times 2 \times 2$) و trans (حيث $^{00} = 180^{\circ}$) الجزيئات المدروسة تبين الحسابات أن هذه الجزيئات تتواجد بشكل cis (حيث أو = 180 (حيث التعبير عن المعاقد) الجزيئات المدروسة تبين الحسابات أن هذه الجزيئات تتواجد بشكل cis (حيث أو = 180 (حيث التعبير عن المعاقد) و عائد المعاية الرائية المعادي (حيث التعبير عن المائة الإلكترونية بدلالة الزاوية الثنائية السطح (التي تدعى احيانا بزاوية الدوران الداخلى أو الفتلى φ) بالشكل التالى:

$$V(\varphi) = \frac{1}{2} \sum_{n=1}^{\infty} V_n (1 - \cos n\varphi) + \frac{1}{2} \sum_{n=1}^{\infty} U_n \sin n\varphi$$
(2)

فإذا كان التابع متناظراً بالنسبة إلى النقطة arphi=0، وهذا عادة يكون محققا من أجل معظم الجزيئات المتمتعة بمماكبات متناظرة، وبالتالي يبقى فقط المجموع الأول:

$$V(\varphi) = \frac{1}{2} \sum_{n=1}^{\infty} V_n (1 - \cos n\varphi)$$
(3)

فمن أجل رسم منحني الطاقة الكامنة بدلالة زاوية الدوران الداخلي استخدمنا الطريقة "HF/6-31G حيث في أثناء الحساب تم تغيير الزاوية كل 5 درجات في المجال من 60- وحتى 300 درجة (إن هذا المجال يكافئ المجال من 0 وحتى 300 درجة). فإذا اتخذنا كبداية لحساب زاوية الدوران المماكب trans (في هذه الحالة يوافق الزاوية $\varphi = 0$ وحتى 360 درجة). فإذا اتخذنا كبداية لحساب زاوية الدوران المماكب trans (في هذه الحالة يوافق الزاوية $\varphi = 0$ وحتى 360 درجة). فإذا اتخذنا كبداية لحساب زاوية الدوران المماكب trans (في هذه الحالة يوافق الزاوية $\varphi = 0$ وحتى 360 درجة). فإذا اتخذنا كبداية لحساب زاوية الدوران المماكب trans (في هذه الحالة يوافق الزاوية $\varphi = 0$ وحتى 360 درجة). فإذا التخذا كبداية لحساب زاوية الدوران المماكب trans (في هذه الحالة يوافق الزاوية و 10 وحتى 360 درجة). وراز الداخلي $\varphi = 0$ المحس ما هو ممثل على الشكل (1) فيمكن تمثيل تغير الطاقة النسبية بدلالة تغير زاوية الدوران الداخلي $\varphi = 0$ الرابطة $\varphi = 0$ الرابطة السبية بدلالة تغير زاوية الدوران الداخلي عن مول الرابطة و 10 منتي ما شكل (1) من خلال هذه المعطيات يمكن تحديد المعاملات V_n وذلك باستخدام منحني الرابطة الربعات الصغرى. حيث المربعات الصغرى. حيث السبية الدوران الداخلي المربعات المربعات الصغرى. حيث الموط التالية:

$$V(\varphi_i) = \frac{1}{2} \sum_n V_n (1 - \cos n\varphi_i) = \Delta E$$
(4)

حيث ΔE – فرق الطاقة بين المماكب المتخذ كبداية لحساب زاوية الدوران الداخلي والمماكب الثاني الواقع عند الزاوية ρ_i المتمتع بنهاية صغرى، بالإضافة إلى أن المشتق الأول للعلاقة السابقة عند النهاية الصغرى يساوي الصفر . يتمثل على الجدول (3) قيم V_n من أجل جميع الجزيئات المدروسة. إن هذه المعطيات مفيدة جدا من أجل دراسة التماكب الجزيئي بطريقة الأطياف الاهتزازية والمجهرية [9]، وتستخدم من أجل تحديد بعض الخواص الكهربائية العائدة للذرات في الجزيئات مثل عزوم ثنائيات ورباعيات الأقطاب وشحنات الذرات في الجزيئات التي يمكن تحديدها من خلال الطريقة نصف الاختبارية التي تستند على نظرية التوابع الكمونية للدوران الداخلي للجزيئات [15,10]. يمكن أيضا استنتاج فرق الطاقة بين المماكبات من خلال الطاقة الكلية المحسوبة بالطرائق المختلفة [19].

الشكل (2): التوابع الكمونية للدوران الداخلي للجزيئات CICH2CHO FCH2CHO و BrCH2CHO المحسوبة وفق الطريقة *HF/6-31G. الجدول (3) المعاملات V_n الممثلة في العلاقة (3)، فرق الطاقة بين المماكبات

Ab inito حيث X = F, Cl, Br باستخدام طرائق

·(eui/mor	·		
V_n	FCH ₂ CHO	CICH ₂ CHO	BrCH ₂ CHO
V_1	3637.7240	2814.1860	3018.136
V_2	3672.2860	1510.8680	580.926
V_3	-1196.630	-1436.223	-1618.846
V_4	97.467	171.399	176.376
V_5	48.444	43.702	67.1856
V_6	-30.572	-40.542	-29.880
$\Delta E = E(cis) - E(trans)$	2489.541445	-	-
$\Delta E = E(cis) - E(gauche)$	-	1455.023	1897.008
trans \rightarrow cis	5683.641893	-	-
gauche \rightarrow cis	-	3438.823	3357.817
gauche \rightarrow gauche	-	33.357	430.529

والحواجز الكمونية للجزيئات المدروسة (الواحدة cal/mol).

التواترات الاهتزازية والخواص الترموديناميكية:

لقد قمنا أيضا بإجراء حساب التواترات الاهتزازية للجزيئات المدروسة بالطرائق المذكورة. حيث يتمثل على الجدول (4) التواترات الاهتزازية والشدات النسبية. إن هذه المعطيات تساعد على تفسير الأطياف الاهتزازية ومعرفة مواقع العصابات الموافقة لكل اهتزازة عادية للجزيئات. أضف إلى ذلك، إن الحسابات Ab initio تقدم معلومات كافية حول الخواص الترموديناميكية للجزيئات بصورة غير مباشرة، حيث نستطيع من خلال الطاقة الاهتزازية الصفرية المعبر عنها بالعلاقة التالية:

$$E_{ZPE} = \frac{1}{2} h \sum_{k=1}^{3N-6} v_k$$

والطاقة الكلية للجزيئات تحديد طاقة تحول الجزيء إلى ذراته ومن ثم طاقة تشكل الجزيء، أنظر بهذا الخصوص [26-24]، حيث تمثل V_k تواتر الاهتزازة العادية k. ونستطيع أيضا من خلال هذه المعطيات تحديد التغير في الانتالبية، والانتروبية، والسعة الحرارية للجزيئات وذلك بمساعدة طرائق الترموديناميكية الإحصائية التي تحول هذه المعطيات الطاقية إلى الخواص الترموديناميكية للجزيئات والتي يعبر عنها بالعلاقات التالية[20]:

$$Q(T) = \sum_{i} \exp(\varepsilon_{i} / kT)$$
$$S = Nk \left[\frac{\partial}{\partial T} (T \ln Q) - \ln N + 1 \right]$$
$$C_{v} = NkT \frac{\partial^{2}}{\partial T^{2}} (T \ln Q)$$
$$C_{v} = C_{p} + R$$

$$H(T) - H(0) = \int_{0}^{T} C_{p} dT = \frac{RT^{2}}{Q} \frac{\partial Q}{\partial T} + RT$$
$$\frac{\partial}{\partial T} (T \ln Q) = \ln Q + \frac{T}{Q} \frac{\partial Q}{\partial T}$$
$$\frac{\partial^{2}}{\partial T^{2}} (T \ln Q) = \frac{2}{Q} \frac{\partial Q}{\partial T} + \frac{T}{Q} \frac{\partial^{2} Q}{\partial^{2} T} - \frac{T}{Q^{2}} \left(\frac{\partial Q}{\partial T}\right)^{2}$$
$$\frac{\partial Q}{\partial T} = \frac{1}{kT^{2}} \sum_{i} \varepsilon_{i} \exp(-\varepsilon_{i} / kT)$$
$$\frac{\partial^{2} Q}{\partial T^{2}} = -\frac{2}{T} \frac{\partial Q}{\partial T} + \frac{1}{k^{2}T^{4}} \sum_{i} \varepsilon_{i}^{2} \exp(-\varepsilon_{i} / kT)$$

حيث يعبر عن التابع الجزئي الكلي بالعلاقة التالية:

$$Q = Q_{trans}Q_{rot}Q_{vib}Q_{elec}$$

وهو يمثل جداء المساهمات الإلكترونية والاهتزازية والدورانية والانسحابية، يمكن الإطلاع بالتفصيل على كيفية تحديد هذه المساهمات في المرجع [26,20]. يمكن أيضا تحديد انتالبية التشكل من طاقات الاهتزازية للوضع الصفري (ZPVE) [27]. يمثل الجدول (5) الخصائص الترموديناميكية للجزيئات المذكورة عند الدرجة C⁰C وكذلك الطاقة الصفرية الاهتزازية.

الاستنتاجات:

Ab initio درست هذه الجزيئات للمرة الأولى بالطرائق غير الاختبارية Ab initio. ووفقا للحسابات غير الاختبارية Las-FCH₂CHO بينما المماكبات initio تبين أن المماكب cis-FCH₂CHO أدنى طاقة من المماكب cis-SCH₂CHO. بينما المماكبات والمحاجز الكمونية. Cis-XCH₂CHO حيث X = Cl, Br عند منحني تغير gauche-XCH₂CHO معين الدوران الداخلي حول الرابطة الأحادية C – C وفرق الطاقة بين هذه المماكبات والحواجز الكمونية. Inager الاهتزازية وبعض الخواص الترموديناميكية عند الدرجة C 298.15 وكذلك قيم طاقات السويات الاهتزازية الصفرية وبعض الخواص الترموديناميكية عند الدرجة C 298.15 وكذلك قيم طاقات السويات الاهتزازية المادية وبعض الخواص الترموديناميكية عند الدرجة C ما 298.15 وكذلك قيم طاقات السويات الاهتزازية الصفرية وبعض الخواص الترموديناميكية عند الدرجة C ما تاك والحواجز الكمونية. مع ماقات السويات الاهتزازية الصفرية وبعض الخواص الترموديناميكية عند الدرجة ما مالكبات والحواجز الكمونية مع مالقات السويات الاهتزازية الصفرية وبعض الخواص الترموديناميكية عند الدرجة C ما مالماكبات والحواجز الكمونية مع مالقات السويات الاهتزازية الصفرية وبعض الخواص الترموديناميكية عند الدرجة C ما مالماكبات والحواجز الكمونية مع مالقات السويات الاهتزازية الصفرية وبعض الخواص الترموديناميكية عند الدرجة C ما مالمين معلى يتائج دقيقة بالمقارنة مع الاهتزازية الصفرية الصفرية المعارية الطريق الجيدة التي تعطي نتائج دقيقة بالمقارنة مع أثناء دراسة هذه الجزيئات في المالان (بالتحديد ألتحرية. من الجدير الإشارة إلى أن هذه المعطيات مفيدة جدا في أثناء دراسة هذه الجزيئات في الحالة المثارة (بالتحديد في أثناء دراسة هذه الجزيئات)، لأنه على الأقل استطعنا من خلال هذه الدراسة معرفة شكل سطح الحراسة الكيمياء الضوئية لهذه الجزيئات، أضف إلى ذلك، يمكنا من معرفة البنى الهندسية المستقرة مع أثناء دراسة هذه الدراسة معرفة شكل ملحديد معرفة فعالية الدرات في الجزيئي ما معرفة الإلكترونية على الأول المالغان ما معرفة البنان المائمة الطاقة الكامنة التماكب الهندسي الجزيئي لهذه الجزيئات، أضف إلى ذلك، يمكنا من معرفة البنى المائرة، إلا أننا لم معرفة فعالية الذرات في هذا العمل، لذلك لأن هذه الدراسات خاصة في مجال الاصطناع العضوي وفي دراسة آلية مم مالنا مامسينية العرراية والمائمان المويئية.

حيث X = F, Cl, Br باستخدام طرائق Ab inito

حيث يعبر عن التواتر بالواحدة ¹ .								
	HF / 6-31G*							
Model	t -	FCH2CHO		g - CIC	H2CHO	g - BrC	H2CHO	to 1 art 1
	Intensity	frequency	التتاظر	Intensity	frequency	Intensity	frequency	الشاظر
1	0.7292	94.87	A	0.5599	50	0.3535	73.38	А
2	0.902	353.07	Â	0.3621	306.21	0.192	285.27	А
3	0.1387	576.42	Â	0.3492	494.87	0.3906	469.31	Α
4	0.0154	807.79	A	0.4554	774.1	0.7678	693.08	А
5	0.354	1141.41	Â	1.0046	880.13	0.1162	872.48	Α
6	2.6516	1207.99	Å	0.7465	1132.55	0.2215	1081.47	Α
7	0.0482	1238.07	A	0.107	1149.59	0.6573	1154.43	А
8	0.0345	1369.23	A	0.087	1321.05	0.4191	1292.57	А
9	0.3574	1487.76	Â	0.8653	1416.69	0.8087	1370.56	Α
10	0.8976	1558.72	Â	0.344	1546.32	0.2153	1546.84	А
11	0.1217	1636.56	Å	0.2446	1599.34	0.2095	1601.34	А
12	4.3246	2039.94	Â	5.0157	2035.79	5.446	2034.48	А
13	1.7303	3200.34	A	1.2929	3214.06	1.3322	3213.24	Α
14	0.3395	3259.72	A	0.2951	3281.37	0.2263	3290.86	A
15	0.5006	3314.51	Ă	0.027	3359.57	0.0125	3381.33	А
				HF / 6-3	31++G**			
Model	t -	FCH2CHO		g - CIC	H2CHO	g - BrC	H2CHO	1.1
	Intensity	frequency	التتاظر	Intensity	frequency	Intensity	frequency	التناطر
1	0.8104	85.59	Ă	0.5598	60.65	0.3627	77.58	А
2	0.9548	354.76	Å	0.348	308.97	0.1991	283.78	А
3	0.1441	573.73	A	0.3661	495.66	0.3891	472.56	A
4	0.0042	795.12	Å	0.5877	763.51	0.7991	683.82	А
5	0.3931	1125.7	Â	0.83	878.77	0.0951	880.7	А
6	3.1663	1183.87	Â	0.5702	1121.58	0.1492	1072.98	Α
7	0.0606	1227.84	Ă	0.2167	1142.23	0.6173	1154.51	А
8	0.0493	1363.41	Ă	0.1352	1306.24	0.4754	1287.17	А
9	0.262	1468.08	Â	0.8285	1397.22	0.8173	1367.33	A
10	0.9504	1538.29	A	0.3446	1525.77	0.1902	1529.89	A
11	0.2032	1599.88	A	0.2303	1578	0.214	1583.51	A
12	5.1728	2009.57	A	6.036	2003.1	6.4454	2018.41	Α

|--|

13	1.5544	3134.03	A	1.1576	3148.72	1.1698	3208.67	А
14	0.3831	3220.92	Â	0.2826	3237.87	0.2782	3290.2	А
15	0.3386	3276.6	A	0.0285	3318.64	0.0089	3386.86	А
				B3LYP	/6-31G*			
Model	t -	FCH2CHO		g - CIC	H2CHO	g - BrCH2CHO		التتاظر
	Intensity	frequency	التناظر	Intensity	frequency	Intensity	frequency	
1	0.4464	82.01	A	0.0485	59.15	0.1853	85.56	А
2	0.5989	315.83	Â	0.2789	271.75	0.1622	254.69	А
3	0.0833	531.49	Â	0.2272	455.53	0.2666	435.06	А
4	0	717.44	A	0.3488	697.3	0.4668	625.1	А
5	0.4722	1040.34	Â	0.7254	793.99	0.0587	795.66	Α
6	2.0069	1107.7	Å	0.1404	1036.16	0.1134	981.12	А
7	0.0321	1114.19	Ă	0.8256	1041.95	0.7238	1053.92	А
8	0.008	1250.07	Ă	0.073	1200.39	0.3695	1177.17	А
9	0.2004	1367.09	Â	0.5865	1288.04	0.4681	1235.92	А
10	0.4339	1421.79	Â	0.1712	1421.5	0.0986	1428.11	А
11	0.228	1497.36	Â	0.2805	1470.45	0.2076	1473.98	А
12	2.9495	1845.09	A	3.3797	1841.58	3.8094	1837.01	Α
13	2.198	2915.83	A	1.6265	2945.73	1.666	2965.74	Α
14	0.3324	3064.88	A	0.2046	3099.44	0.1058	3111.71	Α
15	0.3975	3111.14	A	0.0165	3166.74	0.0121	3192	А

الجدول (5): الخواص الترموديناميكية لمماكبات الجزيئات المدروسة عند درجة الحرارة X 298.15K.

		6-31G*		6-311	++G**	(b)
XCH ₂ CHO	Trans	gauche	gauche	Trans	gauche	gauche
	X= F	X=CI	X=Br	X= F	X=CI	X=Br
ZPVE	33.2896	32.2535	31.9662	32.8193	31.8608	31.8766
Internal Terminal Energy (E)	35.961	35.09	34.825	35.507	34.685	34.732
Enthalpy (H)	36.553	35.682	35.418	36.1	35.278	35.325
Gibbs Free Energy (G)	16.434	14.47	13.671	15.916	14.172	13.599
Cv	12.144	12.943	13.256	12.228	12.99	13.275
CP	14.131	14.93	15.244	14.215	14.977	15.263
Entropy (S)	67.48	71.145	72.939	67.698	70.79	72.868

Ab inito حيث X = F, Cl, Br باستخدام طرائق

	B3LYP/6-31G*					
XCH₂CHO	Trans	gauche	gauche			
	X= F	X=CI	X=Br			
ZPVE	30.5675	29.6358	29.5246			
Internal Terminal Energy (E)	33.344	32.05	32.47			
Enthalpy (H)	33.937	32.643	33.063			
Gibbs Free Energy (G)	13.573	12.683	11.216			
Cv	12.908	11.766	14.03			
CP	14.895	13.753	16.017			
Entropy (S)	68.302	66.945	73.274			

ملاحظات حول الجدول (5): (a) يعبر عن الطاقة الاهتزازية الصفرية (ZPVE)، الطاقة الداخلية (E)،

الانتالبية (H) وطاقة جيبس الحرة (G) بالواحدة kcal/mol بينما يعبر عن السعات الحرارية عند حجم ثابت (C_V) وطاقة جيبس الحرة (G) بالواحدة kcal/mol. (b) cal/mol-K وضغط ثابت (C_P) والانتروبية (S) بالواحدة (C_P) الطريقة المستخدمة هي ^{**}

المراجع:

- BOVEY F. A., Brewster A. I., Patel D. J., Tonelli A. E., Torchia D. A., *Determination* of the Solution Conformations of Cyclic Polypeptides. Acc. Chem. Res., V. 5, N 6, 1972, P.193-200.
- 2. OKI M., *Reactivity of Conformational Isomers*. Acc. Chem. Res., V. 17, N 5, 1985, P.154-159.
- ELIEL E. L. Some Applications of Conformational Analysis. J. Mol. Struct. V. 126, P. 385-401, 1985.
- 4. WILSON E. B. *The Problem of Barriers to Internal Rotation in Molecules*. Adv. in Chem. Phys. V. 2, 1959, P. 367-393.
- 5. LOWE J. P. Barriers to Internal Rotation about Single Bonds. Progr. in Phys. Org. Chem., V. 6, 1968, P.1-80.
- 6. LOWE J. P. The Barriers to Internal Rotation in Ethane. V. 179, 1973, P.527-532.
- BADER R. F., Cheeseman J. R., Laiding K. E., Wiberg K. B., Breneman C. Origin of Rotation an Inversion Barriers. J. Am. Chem. Soc., V. 112, N 118, 1990, P.293-318.
- 8. WILSON E. B. *Conformational Studies on Small Molecules*. Chem. Soc. Rev., V. 1, N 3, 1972, P293-318.
- 9. COMPTO D. A. C. Asymmetric Potential Functions for Internal Rotation as Calculated from Experimental Data Vibrational Spectra and Structure. Ed. By J. R. Durig, Amsterdam, Elsevier. V. 9, 1981, Ch. 5.

- Modern Theoretical Chemistry. Eds. Miller W., Shaefer H. F., Berne B. J., Segal E. N. J. Plenum Press. V. 4, 1978, Ch. 2.
- 11. *Quantum Mechanics of Molecular Conformations*. Ed. By B. Pullman. London, Wiley. 1976, P.1-115.
- 12. Quantum Mechanics of Molecull/ar Conformations. Ed. By B. Pullman. London, Wiley. 1976, P.117-192.
- 13. GODONOV I. A., TATEVCKII V. M., J. Phys. Chem., Vol. 64, N 8, 1990, P.2233. (Moscow).
- TATEVCKII V. M., BADAWI M. Abd Al H., GODONOV I. A., Phys. Chem., Vol. 66, No.8, 1992, P.2275. (Moscow).
- WILLIAMS J. E., Stang P. J., SCHLEYYER P., Van R. Physical Organic Chemistry: Quantitative Conformational Analysis; Calculation Methods. Ann. Rev. Phys. Chem. V. 19, 1968, P.531-558.
- SCHERAGA H. A. Calculations of Conformations of Polypeptides. Agr. Phys. Org. Chem. V. 6, 1968, P.103-185.
- 17. BURKERT U., ALLIGER H. L. *Molecular Mechanics*. Am. Chem. Soc. (ACS Monograph 177), 1962.
- 18. PARR R. G., YANG W., *Density Functional Theory of Atoms and Molecules*, Oxford Scientific, 1989.
- 19. KOCH W., HOLTHAUSEN M. C. "A Chemist's Guide to Density Functional Theory". Wiley – VCH, 2001.
- 20. LEVINE I.N. Quantum Chemistry, 5th Edition, Prentice Hall, 1999.
- 21. SCHMIDT M.W., BALDRIDGE K.K., BOATZ J. A., ELBERT S. T., GORDON M. S., JENSEN J., KOSEKI H., S., MATSUNAGA N., NGUYEN K. A., SU S., WINDUS T. L., DUPUIS M., MONTGOMERY J. A. "General Atomic and Molecular Electronic Structure System (GAMESS)". J. Comput. Chem., 14,1993, 1347-1363.
- 22. NEMUKHIN A. V., GRIGORENKO B. L., GRANOVSKY A. A. Molecular modeling by using the PC GAMESS program: From diatomic molecules to enzymes. Moscow University Chemistry Bulletin. Vol. 45, No. 2, 2004, P. 75.
- BECKE A. D., DICKSON R. M., Basis-Set-Free Local Density-Functional Calculations of Geometries of Polyatomic-Molecules, J. Chem. Phys., V. 99. N 5, 1993, P. 3898-3905.
- 24. GAUSS J., OLSEN J., JORGENSEN P., HELGAKER T., The Prediction of Molecular Equilibrium Structures by the Standard Electronic Wave Functions. J. Chem. Phys., V. 106. N 15. P. 1997, 6430-6440.
- 25. GALABOV B., YAMAGUCHI Y., REMINGTON R.B., SCHAEFER H.F., *High Level ab Initio Quantum Mechanical Predictions of Infrared Intensities*. J. Phys. Chem. A. V. 106, N 5, P. 2002, 819-832.
- HEAD-GORDON M., BYRD E.F.C., SHERRILL C.D., The Theoretical Prediction of Molecular Radical Species: a Systematic Study of Equilibrium Geometries and Harmonic Vibrational Frequencies. J. Phys. Chem. A, V. 105, N 42, P. 2001, 9736-9747.
- 27. POPLE J.A., RAGHAVACHARI K., CURTISS L.A., P.C. Redfern, Investigation of the use of B3LYP zero-point Energies and Geometries in the Calculation of Enthalpies of Formation. Chem. Phys. Lett. V. 270, 1997, P. 419-426.