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  ABSTRACT    

 

 

   In this paper, efficient direct and iterative methods are described for solving a large 

random sparse non-symmetric linear system. Such systems of linear equations of huge 

order arise in several applications such as physics, mechanics, signal processing and other 

applications of real life problems. For this reason, we try to develop direct and iterative 

methods for solving such systems of linear equations. The suggested direct method is 

based on the sparse LU-decomposition method (DSLU). The developed iterative methods 

include a Semi-iterative Method (SM), a Splitting-based Iterative Method (SIM) and a 

preconditioned GMRES method. We consider two types of preconditioners based on 

Incomplete LU-decomposition (ILU). We test and compare the numerical implementations 

of these methods on four numerical examples to demonstrate their efficiency. Results show 

that the proposed ILU preconditioners in GMRES reduce largely number of iterations and 

give very accurate solutions. 
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 الممخّص  
 

في  ذييال المةاليةف طصييق طرائييق مباشيرة وتكرارييية فعاليية لحيل جمييل معيادلات خطيييةف ،ييير متطياظرة ف كيفيييةف كثيييرة 
الأصفار اات مراتب عميا. تظهر ذال الجمل من المعادلات الخطية اات المراتب العميا ف  تطبيةيات عدييدة كالفياييا  و 

يييو والمعالجيية الر مييية وتطبيةييات مخيير  ميين ماييائل الحييياة الحةيةييية. لهييال الأاييباب طحيياول تطييوير طرائييق مباشييرة الميكاط
كثيييرة  LUوطرائييق تكرارييية لحييل ذيياا الطييوع ميين جمييل المعييادلات. تعتمييد الطريةيية المباشييرة المةترحيية عميي  طريةيية تحميييل 

( و طريةيية تكرارييية تعتمييد عميي  SMة طصييق تكرارييية  (. تتضييمن الطرائييق التكرارييية المطييورة  طريةييDSLUالأصييفار  
،يير التيا   LUن مين المايرعات التي  تعتميد عمي  تحمييل يالمايرعة.  طيدرن طيوع  GMRES( و طريةيةSIMالتجائية  

 ILU طختبيير و طةييارن التطفييياات العددييية لهييال الطرائييق عميي  مربعيية ممثميية عددييية لتوضيييئ فعاليتهييا. تبييين الطتييائ  من .)
 تخفض عدد التكرارات بشكل كبير و تعط  حمولا د يةة جدا.    GMRESالمحددة ف   ILUالمارعات 

 
 كممات مفتاحية 

 GMRES ف المارعILU .ف جممة كثيرة الأصفارف طريةة مباشرة 
 
 
 
 
 
 
 
 

1. Introduction: 

                                                 

 سورية.   –حمص  –جامعة البعث  –كمية العموم  -قسم الرياضيات  -مدرس  *
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Our goal is to solve a system of linear equations 

bAx                         (1) 

where A  is a large, random sparse and non-symmetric matrix of order nn  and b  is 

a given column vector of order n . Such systems are frequently encountered in almost all 

scientific and engineering applications [1,2] such as physics, mechanics, signal processing 

and other applications of real life problems. For this reason, we try to develop direct and 

iterative methods for solving such systems of linear equations. Methods of solution may be 

classified as direct, involving a fixed number of arithmetic operations, and iterative, 

involving the repetition of certain steps until the desired accuracy is achieved. The 

performance of direct methods for sparse systems is largely due to that of the factorization 

of the matrix. The disadvantage with iterative methods is that the rate of convergence may 

be slow or they may even diverge and we need to find preconditioning matrix to speed up 

the convergence rates [3]. This suggests that direct methods should be preferred. The first 

approach to solve (1) is by the direct sparse LU-decomposition method (DSLU). In this 

approach, an upper triangular matrix U and a lower triangular matrix L  are constructed 

such as LUA   [4]. The system (1) can then be solved in two steps using the factors L  

and U , respectively. The second approach to solve (1) is by iterative methods, which 

include a Semi-iterative Method (SM), a Splitting-based Iterative Method (SIM) and 

preconditioned GMRES method [5]. Certain preconditioners are able to improve on this 

situation. A good preconditioner is necessary for the convergence of iterative methods for a 

large random non-symmetric coefficient matrix A . We will present two types of 

preconditioning in the solution of (1). The ILU preconditioners are based on an ILU-

decomposition [6,7,8] which are among the most successful preconditioners. They are of 

interest because of the spectral condition number of the preconditioned system can be of a 

lower order. 

In this paper, direct sparse LU-decomposition method (DSLU), SM, SIM and 

preconditioned GMRES method which are applicable to the solution of (1) are described. 

They are tested and compared on four numerical examples to demonstrate their efficiency. 

Two types of the preconditioners based on ILU are outlined.  
 

2. Importance and Parts of the Research: 
Systems of linear equations given in (1) are frequently encountered in almost all 

scientific and engineering applications such as physics, mechanics, signal processing and 

other applications of real life problems. For this reason we attempt to develop direct and 

iterative methods for solving such systems of linear equations.  

 

2.1. Storage Scheme: 

The data structure described here [9,10] involves the use of three arrays.  na...1VA  

contains all the non-zero entries of A  stored row by row.  na...1JA  contains all the 

column numbers of these entries and  1n...1IA   is an array of pointers:  iIA  gives the 

address in VA  of the first non-zero entry in row number i  of A  when ni  . 

  11nIA  points to the last non-zero entry in row  n  of A . For example, the matrix A : 
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can be presented by the JA,VA  and IA  arrays as 

 

  
 

The matrix (2) can not be factored by using the above storage scheme, “in place” 

unless fill-ins are accounted for when storage is created. For example, when (2) is factored, 

non-zero numbers are assigned to 42a and 53a , but neither of these elements appears in (3) 

as illustrated, i.e., there is a need for reallocating storage to make room for the fill-ins.  

 

2.2. Proposed Solution Algorithms 

The solution of (1) is typically found by two different types of methods-direct 

methods and iterative methods. In this section, we present direct sparse LU-decomposition 

method (DSLU) and three different iterative methods including (i) SM (ii) SIM and (iii) 

GMRES method with preconditioning matrices derived by incomplete LU-factorization of 

A  in the form proposed in [11].  

The determination of fill-ins of a sparse matrix is a central problem in the solution of 

sparse linear systems of equations using direct methods such as direct sparse LU-

decomposition method (DSLU). In this subsection, we describe an efficient algorithm for 

determining the sparsity P  of the LU  factors, which have no restriction at all with respect 

to the sparsity pattern of A . This algorithm is based on the powers of a Boolean matrix 

obtained from A . The sparsity pattern is described either a priori or implicitly by some 

approach. However, it is desirable to know in advance the pattern of non-zeros of the LU  

factors because of updating the data structure to facilitate the non-zeros and fill-ins as well. 

Moreover, the method, as we see, provides the information needed for computing the non-

zero structure of the LU  factors. After determining the sparsity pattern of the LU  factors, 

computing L  and U  is straightforward.  

The problem is to find the set P  of edges for which the factors L and U are sparse 

but also such as matrix LU resembles A  as much as possible. In case the sparsity pattern 

of A  is irregular, there are several possibilities to construct a good choice for the set P . 

Gustafsson [12] proposed the following: 

 

First consider the standard incomplete LU- decomposition, i.e.   }0a:j,i{P ij  . 

Then extend P  with positions  j,i  where the product LU has non-zero elements and 

eventually continue in this manner a few steps more. This technique is tested extensively 

by Langtangen [6]. It is costly and hence is not recommended. 

 

Another approach determines the elements in P  during the elimination process. P  is 

described implicitly by allowing only entries which are in absolute value greater than a 

certain threshold value [7]. This approach is very sensitive if matrix A  is ill-conditioned 

and thereby it does not suit such cases.  

For these reasons, we describe the following best approach to construct P  which 

avoids the above mentioned drawbacks. This approach that we take uses a Boolean matrix 

multiplication.  
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For these reasons, we use in this paper best approach [11] to construct P  which 

avoids the above mentioned drawbacks. The approach that we take uses multiplication of 

Boolean matrix, which differs from regular multiplication [11].  

Consider the digraph  EVGA ,  of a given matrix A . If B  is the Boolean matrix 

representing the digraph AG , the modified digraph  mB
EVG m ,  is defined as 

  kim vvEE , ; that is a new edge  ki vv ,  is added to AG  to form mB
G , where m  is 

some positive integer. Initially, the sparsity structures of the matrices A  and B  are the 

same, that is, A  and B  are exactly having the non-zero elements at the same positions. 

But the problem is to obtain the modified mB
G  at the level m . However, while finding 

powers of B  some zero elements in B  become 1 in mB . Every initially zero element in B  

becomes 1 in mB  gives a new edge, say,  ki vv ,  which is added to AG  to form mB
G . 

These elements are precisely the positions of fill-ins in A . Now we try to find the sparsity 

pattern of L  and U  in terms of set theory. 

In order to determine the non-zero structure of L  andU , we define the set 

    },1,,:,{ njiinfillincludingzerononisjipositionjiP   

Then, clearly    
}1:,{ 

m
ijbjiP  where    11,  nmbB m

ij

m , and m  does not 

exceed the longest path of AG . Note that the both two sets P  and mE  have the same 

elements. Thus, the set mP  gives the sparsity pattern of ILU(m) and L and U are lower and 

upper triangular matrices respectively at level m. The method for finding the set P  is 

summarized in the following algorithm. 

Let  ijbB   is given by 



 


otherwise

aif
b

ij
ij

,0

0,1
         (4) 

Algorithm 1  

 

Step 1.  

       Form the matrix B  as defined in (4) 

Step 2.  

       Compute  1,2 mB
m

. 

 If ,
122 


mm

BB then   

       Form the set    
}1:,{

2


m

ijbjiP . 

 Else  

      1mm  , and go to Step 2. 

From the Algorithm 1, it follows that the sparsity pattern of LU  is approximately 

equal to that of 
m

B2 .  At any given iteration, if the calculated Boolean matrix agrees with 

the matrix at the previous iteration, i.e. ,
122 


mm

BB  then the process has converged and 

we have the sparsity pattern of the LU  factors. If 
12 2m m

B B


 , we get the complete LU  

factors. In this case, we get the direct sparse LU decomposition method (DSLU).  
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Definition 1: 

 Suppose that  ijbB   and  ijbB   are square Boolean matrices of order n  and 

"and" be a Boolean operator defined on the entries of B and B  . The Boolean product of 

B and B  , denoted BB  , is the nn  Boolean matrix  ijcC   defined by 

 

 

1 1 and 1 , 1

0 .

ik kj

ij

True if b b for some k k n
c

False otherwise

     
 


                            (5) 

From the definition, it follows that 1ijc  iff 1 and 1ik kjb b   . Since we need to 

pose a more specific query, we use the Boolean operator "and", which limits results to 

those items that certain both (or all) of the search terms in our query. Thus, we can easily 

perform the comparisons and checks for each position of the Boolean product.  

To find the sparsity pattern of L  and U  at level m , compute the powers 
m232222 B,...,B,B,B . 

Note 2.  

To find the sparsity pattern of L  and U  such that LUA  , it is sufficient to find the 

smallest m  such that
122 


mm

BB , where m  is the first time the matrix power 
m

B2  

becomes
12 m

B . 

 

( I ). Incomplete LU-Decomposition Method (ILU Method): 

 Once the non-zero structure of L  and U  matrices is obtained, i.e., when the set P  is 

determined, the construction of ILU decomposition based on Doolittle's method, is made 

where all the diagonal entries of L  are 1. 

LUA   gives 
 





ji

k

kjikij ula
,min

1

                                    (6) 

This gives the following explicit formulas for ijl  and iju : 

1

1
1

1

      ,   

k

ik ij jk i
j

ik ik ik ij jk

jkk

a l u

l i k u a l u i k
u










    


                   (7) 

 

While making an incomplete LU–decomposition, we need to store only non–zero 

entries of L  and U . We define extra help array Diag [1…n] which points to the diagonal 

elements of U  in the array VA . The non–zero structure P  of  L  and U  is stored in 

IA,JA  and VA  containing 0ija  as well as fill-ins. The following algorithm calculates 

the incomplete decomposition. The Boolean variable revise is false for the standard 

incomplete decomposition and true for the modified version such that row sums of the rest 

matrix LUAR   equal zero. The array Point [1…n] is an array of integers which points 

to the entries in  L  and U  of row i . 

 

Algorithm 2 The incomplete LU-decomposition: 

For i = 1 To n Do 

    Point [ i ] = 0; 

For i = 2 To n Do 
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   { 

       For v = IA [ i ]+1 To IA [ i+1 ]-1 Do 

           Point [ JA [ v ] ] = v; 

For v = IA [ i ] To Diag [ i ]-1 Do 

         { 

             j = JA [ v ] ; 

             VA [ v ]  = VA [ v ] / VA [ Diag [ j ] ] ; 

             For w = Diag [ j ]+1 To IA [ j+1 ] -1 Do  

                { 

                     k = Point [ JA [ w ] ] ; 

                     If ( k>0 ) then 

                         VA [ k ] = VA [ k ] – VA [ v ] * VA [ w ] ; 

                     Else 

                         If ( revised ) then 

                             VA [ Diag [ i ] ] = VA [ Diag [ i ] ] – VA [ v ] * VA [ w ] ; 

                }//End For w. 

         }//End For v. 

       For v = IA [ i ]+1 To IA [ i+1 ]-1 Do 

           Point [ JA [ v ] ] = 0 ; 

   }//End For i. 

 

(II). Iterative Methods:  

In this subsection, we describe different iterative-like methods for solving (1). These 

methods include the following: 

(1) Semi-Iterative Method (SM): 

The semi-iterative methods are in principle direct methods. The significant feature of 

the methods, however, is that a good approximation to the solution can be obtained after a 

much smaller number of iterations. The goal of reducing the solution time is achieved only 

if the matrix is decomposed in an efficient manner. The major drawback of direct sparse 

LU-decomposition method (DSLU) is that L  and U  are not sparse due to fill-ins, so 

computer storage demands are very high. Moreover, the computational work for 

constructing the factors L  and U  increases considerably with the dimensions of the 

problem. We outline an algorithm for increasing the accuracy of the solution vector. A 

Semi-iterative Method (SM) can do it. The solution procedure consists of two steps: 

1.In the first step: the matrix is decomposed in an approximate manner.  

2.In the second step: a semi-iterative method is used to rapidly improve the accuracy of the 

solution.  

The basic idea behind semi-iterative method is to firstly reduce the computer storage 

demands required to L  and U  by determining the fill-ins to the level of 2 and secondly to 

increase the accuracy of the solution vector of (1). The semi-iterative method is given in 

the following algorithm: 

 

 

Algorithm 3 Semi-iterative Method: 

1. Call Algorithm 1 to construct P  for 2m  . 

2. Compute  2** LUULM    by using Algorithm 2. 

3. Solve bxUL 1
**  by using forward and back substitution algorithms respectively. 
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4. For ,...2,1i ,until the desired accuracy is achieved 

i. Compute ii Axbr  . 

 ii. Solve ii ryUL **  by using forward and back substitution algorithms  

 iii. Compute iii yxx 1 . 

 

 The differences between DSLU and SM algorithms:  

From the Algorithm 3, it is clear that the differences between DSLU and SM is that 

in the former method it is required to: 

1. Determine the fill-ins until 
122 


mm

BB while in SM it is enough to determine the fill-

ins to the level of 2. 

2. The computer storage demands required in DSLU is more larger than that of SM. 

3. The accuracy achieved by SM is more than that achieved by DSLU.   

Note that SM begins with the factorization of the original matrix. Once the LU  

factors have been computed the Algorithm 3 should be used to achieve the desired 

accuracy. 

 

(2) Splitting-Based Iterative Method (SIM): 

In this subsection, we outline an iterative refinement method for solving large non-

symmetric sparse systems of linear equations as proposed in [15]. But this method is based 

only on the LU-decomposition outlined in Algorithms 1 and 2. We prove that for a given 

non-singular matrix A  having a LU-decomposition, there exists a triangular splitting of A  

such as the spectral radius of the iterative matrix associated with splitting can be made 

arbitrarily small. This method is used this as refinement process in the LU-decomposition. 

The efficiency of the proposed iterative refinement will be shown in the numerical 

experiments section. 

 

Suppose  A  the coefficient matrix of (1) has splitting  

NMA                                 (8) 

where M  is nonsingular matrix. Hence we can construct a splitting-based iterative 

method as follows: 

bMNxMx uu
11

1


                  (9) 

The sequence  ux  generated by (9) will converge to the solution bAx 1  of the 

linear system (1) if the spectral radius of the iterative matrix NM 1  is less than one 

i.e.   11  NM . In general we can not guarantee that the method (9) is convergent for any 

choice of M  and N  in (8). For the sake of the efficiency of the method (9), we have to 

consider whether: 

(i)   cMx   can be easily solved. 

(ii) The splitting based iterative method satisfies the convergence condition   11  NM .  

We choose a special splitting (8) satisfying condition (i), then study the spectral 

properties of  NM 1 . 

Definition 2: 

 Splitting (8) is called triangular if M  is a triangular matrix. 

In general, the inverse of the matrix M  may not be easily obtainable. We will show 

that in general M can be chosen as a triangular matrix by using the following results. 
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Let LUA   be the decomposition of A  using Algorithms 1 and 2 where L  and 

U are lower triangular and upper triangular matrices, respectively. Then [15]:  

Lemma 1: 

 For given U  the upper triangular non-singular matrix and given distinct numbers 

nii ,...,2,1,0  , there exist invertible matrices T and diagonal D  such that: 

 TITDU  1                    (10) 

where  n21 ,...,,diag   . 

Proof. For a given U , we can always find a diagonal matrix D  such as all diagonal 

entries of DU are distinct and do not vanish. This means that DU  is diagonalizable. 

However, we can find  

D  such that the diagonal entries of DU  are prescribed numbers. Now, we are able to 

determine T . Let T  be one of the matrices that bring the product DU  into diagonal form, 

i.e., 

  ITDUT 1          (11) 

which completes the proof.                               

From the Lemma 1, it is clear that the product DU  is diagonalizable. Thus, if U  is 

not diagonalizable, D  in (11) can not be arbitrary. 

Note 2: 

 Analogous to the proof of Lemma 1, we have the following. Let LUA   be the 

decomposition of A  with L  and U  are lower triangular and upper triangular matrices, 

respectively. Then there exist non-singular matrices T and D , D  diagonal, such that 

  11   TITDLU T        (12) 

Theorem 2: 

 Let A  be an nn nonsingular matrix having an LU-decomposition outlined in 

Algorithms 1 and 2. Then there exists a triangular splitting of A , 

NMA                    (13) 

such that the spectral radius  NM 1  can be made arbitrarily small. In particular, 

for a given  ndiag  ,...,, 21  such that  nii ,...,2,10  , the matrix M  can be 

chosen such that its spectrum of NM 1  is the same as that of  . 

Proof. 

 Let LUA   be the decomposition of A  with L  and U are lower triangular and 

upper triangular matrices, respectively.  

From Lemma 1, there exist matrices T and D , D  diagonal, such that 

 TITDU  1
 

Defining  1 LDM  and  UDLN  1 . Then  

  ALUUDLLDNM   11
 

and M is lower triangular matrix. Thus, NMA   is a triangular splitting.               

Theorem 3: 

 Let LUA    be the decomposition of A , and let , 1:i i n   be real numbers. Then 

there exists a splitting of A  of type (13) such that M  is symmetric and positive definite 

matrix. Moreover, for any  1,0 , M can be chosen such that     NM 1
. 

Proof: 
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 Let LUA   be an LU-decomposition of A . Then (12) guarantees the existence of 

non-singular matrices T and D , D  diagonal with positive elements, such that 

  11   TITDLU T  

We can define a symmetric positive definite matrix M  as 
TLDLM   

and                      UDLLLULDLAMN TT  . It follows that 

     
     TITTITI

DLUIUDLILULDLINM TTT

 1111

11111111








 

To have  NM 1  arbitrary, it is enough to require  





















 j

j

1
max                                                  

Theorem4: 

 Let  ni
i

i ,...,2,1,0,
1

1



 


 and 

ii

i
i

u
d




1
. Then TTNM 11    

and   11  NM , where  ndiag  ,...,, 21  and T  is a non-singular matrix. 

Proof: 

 We have 

  DUIUDLDLNM   111                (14) 

From Lemma 1, we have             TITDU  1 . Then 

TTNM   11  

From (14), it has been that DUI   is triangular matrix having the eigenvalues i  and 

1i , then     1
1

1
max
1

1 








 i

ni
DUINM .                                                

From the Theorem 4, it is evident that after choosing i , the splitting (13) will be 

determined. However, for convergence of (9) we have to choose all 1i . 

Corollary 1: 

 Let A  be an nn  non-singular matrix having LU-decomposition. Then there exists a 

convergent splitting of A of type (13) in which M  is lower triangular matrix.  

Suppose that all results in this section hold for decomposition with powers of a 

Boolean matrix outlined briefly in the Algorithms 1 and 2 then LUA  . Thus, we obtain  

bLy 1   and yUx 1 . Now we try to construct an efficient Splitting-based iterative 

Method (SIM). In order to guarantee the convergence of this method, we take i  such that 

1i . Then we have the following algorithm. 

Algorithm 4: (SIM) 

1. Determine     1\, 
m

ijbjiP  using Algorithm 1. 

2. Compute LU  by using Algorithm 2. 

3. Choose id  by    
ii

i
i

u
d




1
 where   0,,...,2,1,

1

1



 


 ni

i
i . 
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4. Compute  bLUx 0  by forward substitution and by back substitution algorithms. 

5. Define (see Theorem 2)   1 LDM  and  UDLN  1  

6. For ,...1,0u ,until convergence achieved Do     bDLxDUIx uu
1

1


  . 

Theorem 5: 

 Suppose  LUA   and 
ii

i
i

u
d




1
 for all given 1i . Then ux  generated by 

Algorithm 4 converges to the exact solution *x  of  (1). However, i  can be chosen 

sufficiently small such that Algorithm 4 has a fast convergence rate. 

Proof: 

Since   bDLxDUIx uu
1

1


   and bLUx * . Then    *
0

1*
1 xxDUIxx

u
u 


  

Where 0
1xBBx u

u
 .  Thus   

2

*
0

1

2

*
1 xxDUIxx u

u  
  . 

It follows from the triangular matrix DUI   having the eigenvalues 1i  that 

  1DUI  which implies 0
2

*
1


 

u
u xx .      

 

 Advantages of Algorithm 4: 

1. At each iteration step, Algorithm 4 uses one product of a triangular matrix and vector 

and two products of a number and vector, instead of solving two triangular systems. 

2. Algorithm 4 is always convergent, which is guaranteed by Theorem 2-5 because   

 
2

11  NM . 

3. All operations in Algorithm 4 can be done in the same precision. It is not necessary to 

use double precision for iterative refinement. 

      4. Algorithm 4 can start with any initial approximation 0x . 

5. We can choose  
2

11  NM , for example 
1

1




i
i


 , where 0 , such that  the   

refinement sequence converges fast to the desired solution. 

6. We can use incomplete decomposition to keep the desired sparsity, and then choose 

i and id  for Algorithm 4. 

7. Algorithm 4 is very useful for vector and parallel processing, because it just involves   

products of a matrix and a vector. 

 

(III). The Proposed Preconditioners: 

Convergence of Krylov subspace methods can be significantly enhanced using 

preconditioners. In this Section, we outline the preconditioning strategy we use. 

The preconditioners considered in this work are based on ILU decomposition. The 

ILU decomposition given in Algorithm 2 is based on the LU-decomposition of the 

coefficient matrix A . In ILU( m ) (ILU of level m ), we use Algorithm 1 for determining 

non-zeros which fill- L  and U  to a certain level m . A level function is used in an 

incomplete factorization to control the number of fill-ins. Algorithm 2 together with the 

Algorithm 1 does produce an optimal preconditioner, when 
122 


mm

BB and we get the 
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solution in one step. That is LU  is approximately the exact decomposition of A  because 

there is no information left out during decomposition. 

The preconditioning matrix M  can be chosen to represent an incomplete LU- 

decomposition of A . The ILU decomposition is defined so that M  has the desired sparsity 

pattern P . For all pairs   Pji ,  decomposition is carried out, other pairs are left out. The 

commonest and simplest choice is   0,,  ijajiP , which allows no fill-in during 

incomplete factorization. The choice   0,,  ijajiP  leads to the preconditioner 

ILU(0) which is not the best choice to be made. Although this is a simple and an effective 

way of constructing M , in some cases it can differ significantly from 1A , since too much 

information was left out during the ILU decomposition. However, another approach to 

achieve a powerful preconditioner is to allow some fill-ins. Increasing the fill-in cause an 

increase of computational work associated with the matrix-vector operations and with the 

ILU procedure. Therefore, we have introduced efficient and inexpensive technique to 

define the sparsity pattern P .  

It is important that 1M  is never explicitly computed. Alternatively, we have 

vMzvMz  1        (15) 

 

Case 1:  Preconditioning Matrix  LUM   

The system (15) can be solved by the following two steps: 

Step 1: Forward substitution in VLY  .  

Step 2: Back substitution in YUZ  .  

The preconditioning LUM   involves writing A  as RLUA  , with R as error 

term. When solving the system (1) using the splitting RLUA  , we consider the 

system     bLUAxLU
11 

 . The preconditioned matrix   ALU
1

 has to resemble the 

identity matrix I  as closely as possible. Because          RLUIRLULUALU
111 

 , 

then the matrix   RLU
1

 should be as small as possible in some sense. We give two 

Theorems which state that   1
LU


 is a proper approximation to 1A  if and only if 

  RLU
1

 is sufficiently small for some matrix norm . . 

 

Theorem 6: 

 Suppose RLU   is a splitting of the nonsingular nn  matrix A  and the product 

LU  is nonsingular. Then 

 

 

 
  RLU

A

ALU

Acond

RLU
1

1

111










               (16) 

where   1AAAcond  . the condition number of A , and LU  is the ILU( m ) 

factorization. 

Proof: 

          ALUAALUIALULURLU
11111 

                  (17) 
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1

1

11

111 








 AA
A

ALU
ALUARLU  

by dividing the left and the right-hand side by 1. AA one obtains the first 

inequality of (16). The second inequality follows from equation (16) and (17). 

       

   

1 1 1 11 1 1

1 11 1

LU R A LU A LU R A A LU

A LU LU R A

     

  

       
   

  

 

After division by 1A  the desired inequality is obtained.                                              

 

Theorem  7 : 

  If x  is the solution of (1) and x~  satisfies bxLU ~ . Then 

  RLU
x

xx 1
~





 

Proof: 

 We know that                       AxLUAbLUbAxx
1111~    

But                              ALUAALUIALULURLU
11111 

  

Thus, we have                                RxLUxx
1~ 

  

Taking the norm leads to the desired.                                                                                

 

Theorem 8: 

 Suppose RLU   is a splitting of the nonsingular nn  matrix A , and 11  RA . 

Then 

  
RA1

RA1
ALUcond

1

1
1









  

where LU  is the ILU( m ) factorization. 

Proof: 

  Suppose LUx  equals the null vector 0. 

    xRAxxRxAxRAIxRALUx 111 000    

Because 11  RA  this implies that x  equals 0 so 0x . This proves that LU is 

non-singular.  

     

     

11 1 1

1 1
1 1 1 11

cond LU A cond A R A cond I A R

I A R I A R I A R A R

  

 
   

       
      

     
 

By a Theorem of Atkinson [1]  
RA

RAI
1

11

1

1






 . This completes the proof.       
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The Theorem 8 states that we can make R  as small as possible and this will have a 

positive effect on the condition of   ALU
1

. 

Note 3: 

 If  
122 


mm

BB , then the matrix A  has approximately the exact factorization LU , 

i.e., LUA   because there is no information was left out during the ILU decomposition. 

Consequently, IAM 1 and we get the solution in one step. 

Case 2:  Preconditioning Matrix  1 LDM : 

The system (15) can be solved by Algorithm 4. The preconditioning 1 LDM  

involves writing A  as NMA  , where  UDLN  1 . When solving the system using the 

splitting  UDLLDNM   11 , we consider the system (15). The preconditioned 

matrix   ALDAM
111    has to resemble the identity matrix I  as closely as possible. 

Because        DUUDLLDLDALDAM   1111111
, then the matrix DU  

should be small in some sense. The next Theorem states that 1M  is a proper 

approximation to 1A  if and only if NM 1
 is small for some matrix norm . . 

Theorem 9: 

 Suppose  UDLLDNM   11  is a splitting of the nonsingular nn  matrix A  

having LU-decomposition. Then 

   
 

 
   UDLLD

A

LDA

Acond

UDLLD














111

1

111111

                 (18) 

where   1AAAcond  . the condition number of A , and LU is the ILU( m ) 

factorization. 

 

Proof: 

            ALDAALDIALDLDUDLLD








 11111111111  

     
 

1

1

111

111111 








 AA
A

LDA

ALDAUDLLD  

by dividing the left and the right-hand side by 1. AA one obtains the first 

inequality of (18). The second inequality follows from equation (18). 

           

     

1 1 1 1
1 1 1 1 1 1 1 1 1

1 1
1 1 1 1 1

LD L D U A LD A LD L D U A A LD

A LD LD L D U A

   
        

 
    

         
      

   
 

After division by 1A  the desired inequality is obtained.                                              

 

2.3. Numerical Experiments: 
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In the foregoing, some examples are chosen randomly to illustrate the performance of 

the proposed methods and the preconditioning discussed in the section 4. The direct 

method used for comparison of CPU times is basically the same as LU  with powers of a 

Boolean matrix strategy as given in Algorithm 1. All experiments are performed on an 

IBM Compatible PC with Pentium IV processor and 512 RAM. In our test runs, the zero 

vector 0x  is the initial guess. The right–hand side b  is taken to be xAb  , 

where  Tx 1,...,1,1 , such that the solution of the system is just x . The equation solvers 

have been implemented as C++ codes using double precision accuracy of 810 . Finally 

in all considered examples we apply Algorithm 4 with 
ii

i
i

u
d




1
 with i  chosen, say, 

 ni
i

i ,...,2,1,
1051

1



 , which found to guarantee the spectral radius  

106

11  NM  

and a fast convergence rate of the SIM. The number of iterations of GMRES method 

denotes the number of outer iterations. 

 

3. Results and Discussions: 
In this Section, we introduce some examples to show the efficiency of the suggested 

direct and iterative methods for solving (1). 

Example 1 [4]: 

Consider the system (1) whose coefficient matrix A  is an nn  Hilbert matrix. The 

matrix A  is ill- conditioned for even modest size n . The well-known Hilbert matrix, 

which has a large condition number, is used as a numerical example to illustrate the 

performances of the considered algorithms. The computational results are as follows, 

where GMRESx1 , SIMx1 , SMx1 , LUx  and x~  is the approximate solution obtained by GMRES 

method [5], SIM, SM, direct sparse LU-decomposition method (DSLU) and Gaussian’s 

elimination with row pivoting [4], respectively. The obtained results are reported in the 

Table (1). 

 
Table (1): The solution of Example 1 by the different methods. 

Order (n)        LU                 SM                     SIM               GMRES          Gaussian el.  

                   0.99997735     0.99999996        0.99994979     1.00000000      2.08333330 

  4              1.00011003      1.00000022        1.00028675     1.00000000      0.24166670 

                  0.99992049      0.99999980        0.99967540     1.00000000      0.02119045 

                  0.99997437      1.00000000        1.00005815     1.00000000     -0.00023813  

                  0.99999265      1.00000011        0.99996331     1.00000000      0.02283334 

                  1.00004302      0.99999917        1.00072368     1.00000000      0.30833328 

   5             0.99996321      1.00000152        0.99799995     1.00000000      0.04230156 

                  0.99999540      0.99999919        1.00127048     1.00000000     -0.00126315  

                  1.0004800        1.00000001        1.00011624     1.00000000     -0.00001149 

                  1.00000930      0.99999993        0.99981332     1.00000000      2.45000030 

                  0.99994403      1.00000031        1.00123082     1.00000000      0.36785709 

   6             1.00007093      0.99999978        0.99829934     1.00000000      0.06545557 

                  0.99997872      0.99999994        1.00015364     1.00000000     -0.00332178  

                  1.00003600      1.00000004        1.00036251     1.00000000     -0.00007202 

                  0.99995953      0.99999998        1.00016002     1.00000000     -0.00000054 

 

 From the table, the proposed methods give much more accuracy than that obtained 

by Gaussian elimination. However, the preconditioned GMRES(10) method gives much 
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more accuracy among the proposed methods. The SM gives good accuracy in comparison 

with direct sparse LU-decomposition method (DSLU) and SIM. The SIM gives much more 

accuracy in comparison with Gaussian elimination. Finally, the direct sparse LU- 

decomposition method (DSLU) with powers of a Boolean matrix gives very good accuracy 

in comparison with Gaussian elimination with row pivoting. 

Example 2: 

Consider the system (1) whose the coefficient matrix is given in [11], where 

219,100  nan . 

Example 3: 

 Consider the system (1) whose the coefficient matrix is given in [11], where 

1276,400  nan . 

Example 4: 

Consider the system (1) whose the coefficient matrix is given in [11], where 

2190,1000  nan . 

We have used the methods described in this paper to construct a ILU-decomposition 

for the coefficient matrices associated with the Examples 2 to 4. The ILU( m ) 

preconditioner is based on the powers of a Boolean matrix strategy. The results were 

obtained with 10k   and for an iteration required precision of 810  is achieved. The 

performance of the algorithms discussed in this paper can be considered by examination of 

the statistics collected in tables (2) to (4). The tables show the timing information, the error 

obtained in getting the solution and the number of iterations needed for the convergence of 

the iterative methods for examples 2 to 4. The influence of m  on convergence of the 

GMRES method with the ILU( m ) is also reported in the Tables. The second column in the 

Tables shows the types of the preconditioners used. The third column shows the number of 

non-zero entries in L  and U  together, which, of course, vary with the parameter m . The 

fourth column shows how many iterations were needed to make the convergence criterion 

satisfied. The fifth column gives the time needed for getting the solution. The last column 

shows the error (relative residual) in finding the solution. The time needed to compute the 

preconditioners is not included because it is found to be the same about. The influence of 

k , the dimension of Krylov subspace [11], on the performance of GMRES using the 

proposed preconditioners is tested. For all the tests carried out, the best value for k  is 

found to be 10.  

 
Table (2): The timing information, the number of iterations and the error 

in finding the solution for Example 2, where 219na,100n  . 

Method Precond. No. of 

nonzero       

entries 

No. of 

iteration

s 

CPU time 

(s) 

Error 

 

 

GMRES 

 

 

LD 1 (0) 219 2 negligible 5.7e-10 

ILU(0) 219 9 0.054945 6.5e-10 

ILU(1) 768 6 0.054945 3.4e-10 

ILU(2) 1224 1 0.054945 1.3e-12 

SIM - 1224 1 0.219780 2.1e-10 

LU - 1224 1 0.054945 2.1e-8 

SM - 1224 1 negligible 6.1e-12 
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Table (3): The timing information, the number of iterations and the error 

in finding the solution for Example 3, where 1276na,400n  . 

Method Precond. No. of 

nonzero       

entries 

No. of 

iteration

s 

CPU time 

(s) 

Error 

 

 

GMRES 

 

 

LD 1 (0) 1276 2 0.054945 5.4e-10 

ILU(0) 1276 11 0.109890 1.1e-10 

ILU(1) 4522 5 0.054945 1.2e-10 

ILU(2) 5491 1 0.109890 1.1e-12 

SIM - 5491 1 0.274725 2.1e-10 

LU - 5491 1 0.109890 2.1e-8 

SM - 5491 1 0.109890 9.1e-12 

    

 
Table (4): The timing information, the number of iterations and the error 

in finding the solution for Example 4, where 2190na,1000n  . 

Method Precond. No. of 

nonzero       

entries 

No. of 

iteration

s 

CPU time 

(s) 

Error 

 

 

GMRES 

 

 

LD 1 (0) 2190 4 0.164835 5.4e-10 

ILU(0) 2190 17 0.164835 1.1e-10 

ILU(1) 9115 8 0.219780 1.2e-10 

ILU(2) 11409 1 0.274725 1.1e-12 

SIM - 11409 1 0.334628 2.1e-10 

LU - 11409 1 0.329670 2.1e-8 

SM - 11409 1 0.329670 9.1e-12 

 

From the Tables (2) to (4), it has been seen that the GMRES method needs more 

iterations to converge by using ILU(0). We also have found that the ILU(0) can not benefit 

from k  values greater than 10. From the obtained results we can observe that the 

GMRES(10)/ILU(2) requires a small number of outer iterations, compared to the 

GMRES(10)/ILU( m ) ( 1,0m  ) or GMRES(10)/LD 1 (0). That is ILU(2) is better than 

ILU( m ) ( 1,0m  ) and LD 1 (0). The GMRES(10)/ILU(0) takes a short time to converge 

but requires a large number of iterations. The LD 1 (0) preconditioner is better than the 

ILU( m ) ( 1,0m  ) preconditioner in the term of CPU time and number of iterations. 

However, the results show that the convergence of GMRES(10) improves as we increases 

the value m from 0m   to 2m  . From the results we can see that the preconditioned 

GMRES(10) algorithm is the fast method followed by the SM and direct sparse LU-

decomposition method (DSLU). Note the direct sparse LU-decomposition method (DSLU) 

and SM are equally effective i.e. the CPU time is the same for both SM and direct sparse 

LU-decomposition method (DSLU). But the accuracy achieved by SM is much more than 

that obtained by direct sparse LU-decomposition method (DSLU). The difference in CPU 

time for direct sparse LU-decomposition method (DSLU) and SM comes from increasing 
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the forward substitution and back substitution because of increasing the fill-ins. In the SM 

it is found to be that ILU(2) is enough to achieve the desired accuracy. Thus, the SM is 

recommendable to use. The SIM takes a small number of iterations, but requires a much 

more time to converge. Finally, the GMRES performs the best and SM and direct sparse 

LU-decomposition method (DSLU) are better than SIM.  

 

4. Concluding Remarks and Recommendations: 
In this paper, we have described efficient different methods for the solution of (1). 

The practical comparisons of different implementations of the proposed methods, DSLU, 

SM, SIM, and preconditioned GMRES have been shown in the terms of CPU time to solve 

the same test problems. The numerical experiments indicate that the preconditioned 

GMRES algorithm has been demonstrated to be superior or competitive with the other 

considered methods. It should be noted that the SM provides much more accuracy to the 

solution of (1). From the numerical results, we also see that it is advantageous to use 

ILU( m ) preconditioner based on powers of the Boolean matrix strategy. It should be noted 

that ILU(2) is the best in the terms of number of iterations followed by the LD 1 (0). The 

LD 1 (0) preconditioner is very successful in the terms of CPU time and number of 

iterations. For all the tests carried out, the best value for k , the dimension of Krylov 

subspace [11], is 10. It is recommendable to use LD 1 (0)  preconditioner over ILU(2) 

because there is no fill-ins. We end with the concluding remark to use GMRES(10) method 

with ILU(2) or LD 1 (0) as preconditioners.  
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