2009 (2) مجلة جامعة تشرين للبحوث والدراسات العلمية – سلسلة العلوم الأساسية المجلد (31) العدد (2) Tishreen University Journal for Research and Scientific Studies - Basic Sciences Series Vol. (31) No. (2) 2009

دراسة تجريبية للخواص الفيزيائية للديود الليزري (AlGaAs/GaAs) لاستخدامه كمنبع ضخ لليزر Nd:YAG

الدكتور نظير ديوب^{*}

إيمان الطويل * *

(تاريخ الإيداع 6 / 4 / 2009. قُبل للنشر في 6/7/2009)

🗆 الملخّص 🗆

البحث يتضمن دراسة تجريبية للخواص الفيزيائية للديود الليزري (زرنيخ غاليوم الألمنيوم)، حيث قدمنا عرضًا تفصيليًا لبنية الديود وآلية عمله، وكذلك ملاءمته كمنبع ضخ لليزر الحالة الصلبة Nd:YAG . ثم درسنا تحولات فرق الكمون (المعبر عن استطاعة الديود الليزري) بتابعية درجة حرارة الديود، وذلك من أجل شدات مختلفة لتيار الحقن، و تغيرات الكمون بتابعية تيار الحقن، وأخيراً قمنا بدراسة استطاعة خرج الديود الليزري بتابعية تيار الحقن.

الكلمات المفتاحية: الضبخ الضبوئي – الديود الليزري – (AlGaAs/GaAs).

مجلة جامعة تشرين للبحوث والدراسات العلمية – سلسلة العلوم الأساسية المجلد (31) العدد (2) 2009

* أستاذ مساعد – قسم الفيزياء – كلية العلوم – جامعة تشرين – اللاذقية – سورية.

** قائمة بالأعمال – قسم الفيزياء – كلية العلوم – جامعة تشرين – اللاذقية – سورية.

Tishreen University Journal for Research and Scientific Studies - Basic Sciences Series Vol. (31) No. (2) 2009

Experimental Study of The Physical Properties of The Laser Diode (Algaas/Gaas) (Arsenic Gallium Aluminum) To Use As A Pumping Source of Laser Nd:YAG

Dr. Nazir Dayoub^{*} Eman Altwel **

(Received 6 / 4 / 2009. Accepted 6/7/2009)

\Box ABSTRACT \Box

The research includes an experimental study of the physical properties of the laser diode (AlGaAs/GaAs):

We have made a detailed display of the structure of diode and mechanism of its operation, as well as its convenience as a pumping source for Solid-state laser Nd:YAG.

Then we studied the changes of potential difference (expressing the capacity of laser diode) by the dependence of diode temperature, for variant intensity of the injection current, and the changes of potential by dependence of the injection current; and finally, we made a study of the capacity of laser diode output by dependence of the injection current.

Key words: Light pumping – laser diode – (AlGaAs/GaAs)

مقدمة:

^{*} Associate professor, Physics Section, Faculty of Science, University of Tichreen, Lattakia , Syria ** Academic Assistant, Physics Section, Faculty of Science, University of Tichreen, Lattakia, Syria

تضخ ليزرات الاستطاعة العالية Nd:YAG، بشكل رئيس، بوساطة الانفراغ الكهربائي. حيث تصل استطاعة الخرج لبعض هذه الليزرات المسوقة تجارياً إلى (2000 W) بنظام التشغيل المستمر (cw). وبما أن فعالية أو مردوداً مثل هذه الليزرات تتراوح مابين (%2-1)، هذا يعني أننا بحاجة للمبات تفريغ كهربائي ذات استطاعة خرج ضوئي من مرتبة (kw 2000 kW) كيلو واط.

إذن حوالى W 2000 فقط من هذه الطاقة يصدر على شكل طاقة ليزرية والباقي يتحول إلى حرارة، مما يتطلب أجهزة تبريد معقدة لمثل هذه الجمل الليزرية. إن سبب هذه الفعالية الضعيفة يعود إلى بلورة Nd:YAG التي لا تستطيع الامتصاص إلا على جزء ذي عرض ضيق من التوزع الطيفي الواسع المقدم من قبل لمبات التفريغ. حتى وقتنا هذا ورغم العمل المكثف لم يتم الحصول على لمبات تفريغ تصدر في نطاق امتصاص بلورة Nd:YAG [1].

من هنا تأتي أهمية استخدام الديود الليزري في عمليات ضخ الليزر Nd:YAG، حيث يستطيع أن يصدر ضوء ليزري شديد و بعرض طيفي ضيق جداً من مرتبة عدة نانومترات فقط. إن الطول الموجي الصادر عن مثل هذه الديودات يلائم عصابة امتصاص بلورة Nd:YAG بشكل جيد جداً. ويمكن إستخدام هذه الطريقة الحصول على فعالية تصل الى (%80-50). لكن حتى وقتنا الحاضر، لا يوجد ديود ليزري يعمل بإستطاعة خرج أكبر من 10W. و نظراً للمستقبل الواعد للديودات الليزرية، والذي بعكس لمبات الإنفراغ، لا تتطلب تجهيزات ثقيلة ومعقدة للحصول على جهد عالي (من مرتبة V 1000) فإن هناك بحثاً مكثفاً للحصول على ديودات ليزرية عالية الاستطاعة.

ميزة اخرى مهمة جداً للديودات الليزرية، وهي صغر حجمها، مما يمكننا من تجميع عدد كبير منها في رقاقه واحدة. حيث يمكن الحصول على صفوف من منابع الضخ الضوئي ذات استطاعه خرج تصل الى مرتبة kW باستخدام انساق من الديودات الليزرية هذه.

يتميز هذا النوع من الديودات الليزرية، عن الليزرات التقليدية بنقتطين اساسيتين : الأولى هي أن ذرات الوسط الفعال لليزرات التقليدية (جزيئات أو شوارد) تكون مستقلة عن بعضها بعضاً وسويات الطاقة نفسها لهذه الذرات تستخدم في عملية الحصول على الليزر هذا يعني بشكل رئيس أنه لإنتاج انعكاس السكانية، فإننا بحاجة إلى عدد لا نهائي من الذرات (إحصاء بولتزمان)، حيث هذه الحالة غير موجودة في ليزرات انصاف النواقل. إذ إنّ السويات ذات الطاقة الذرات المحددة تماماً يمكن أن تحتوي على الكترونين فقط (مبدأ باولي)، لكن في أشباه النواقل. إذ إنّ السويات ذات الطاقة الذرات (إحصاء بولتزمان)، حيث هذه الحالة غير موجودة في ليزرات انصاف النواقل، فإن السويات ذات الطاقة المحددة تماماً يمكن أن تحتوي على الكترونين فقط (مبدأ باولي)، لكن في أشباه النواقل، فان التوابع الموجبة للذرات الأحادية تتراكب لتشكل عصابات الطاقة المشتركة و تمتد لتصل إلى المستوى المشغول بإحصاء فيرمي ديراك حيث تحصل عملية الليزر، فإن الانتقال بين التوزعات السكانية يكون بين عصابتي الطاقة بدلاً من سويتين للطاقة و هذا ما الأحادية تتراكب لتشكل عصابات الطاقة المشتركة و تمتد لتصل إلى المستوى المشغول بإحصاء فيرمي ديراك حيث تحصل عملية الليزر، فإن الانتقال بين التوزعات السكانية يكون بين عصابتي الطاقة بدلاً من سويتين للطاقة و هذا ما وسويل الخذه بعين الاعتبار في حالة الليزرات التقليدية. أما الثانية فإنها تتعلق بانتشار الضوء الليزري ضمن منطقة يجب أخذه بعين الاعتبار في حالة الليزرات التقليدية. أما الثانية فإنها تتعلق بانتشار الضوء الليزري ضمن منطقة الوصلة ما إن شدة التوزع الفراغي للحزمة الليزرية تكون محددة بالوسط الليزري وليس بالمجاوبة الليزرية كما هو الحال بالنسبة لليزرات العادية.

تقود هاتان النقطتان إلى أن خواص الحزمة، وكذلك الخواص الطيفية لليزرات أشباه النواقل مختلفة بشكل واضـح عن خواص مثيلاتها في الليزرات التقليدية حيث:

1- الديود الليزري لايملك أي طول موجي محدد سلفاً للإصدار لأنه لا توجد سويتان طاقيتان منفصلتان مسؤولتان عن عملية الليزر كما هو الحال في الليزرات التقليدية، بل على العكس ففي حالة الليزر الديودي يكون لدينا توزع معين للطاقة بالنسبة إلى الإلكترونات ضمن عصابة الطاقة.

2- إن إنتاج و توجيه الضوء الليزري يحصل ضمن حيز ضيق جداً (طبقة pn) الشكل (1). خلافًا لليزرات التقليدية، فإن أبعاد المجاوبة تكون من مرتبة طول موجة الحزمة الليزرية. التوزع الفراغي و تركيب النمط للحزمة الليزرية يكونان معرّفين عن طريق موجه (دليل) الموجة في حين أن الضوء يتحرك بحرية داخل المجاوبة في حالة الليزرات التقليدية. تلعب هاتان النقطتان دوراً أساسياً في تطبيقات الليزرات الديودية [2,3].

الشكل(1): – (A): الوصلة pn في حالة عدم تطبيق جهد. (B): في حال تطبيق جهد أمامي.

تحتوي المنطقة الفعالة على كل من الإلكترونات و الثقوب التي تتتج الفوتونات نتيجة إعادة الاتحاد.

قبل أن تستخدم الحزمة الليزرية من الليزر الديودي بالطريقة العادية يجب تصحيح التباعد الكبير للحزمة باستخدام نظام ضوئي معقد. كذلك الحزمة المتوازية المصححة لا تكون ذات مقطع عرضي دائري، إنما يمكن إن تكون ذات شكل بيضوي و في غالب الأحيان ذات شكل مستطيل. إن التصحيحات المتوجبة على حزمة الليزر الديودي، وكذلك الصعوبات من خلال خواص التمحرف مقارنة بشدة الاستطاعة تعني أن النفقات المعقدة في الضوئيات تضفي على حسنات الليزر الديودي. لهذه الأسباب لم يكن من المفضل استخدام مثل هذه الليزرات الديودية كمنابع اولية ذات استطاعة ليزرية عالية و إنما استخدامها كمنابع ضخ لليزرات التقليدية نتيجة خواصها الممتازة في هذا المجال.

و يجب الاعتراف بأن الاعتبارات السابقة هذه صحيحة في حالة الجمل الليزرية ذات الاستطاعة العالية، المستخدمة في العمليات على المواد، لكن ومن دون أدنى شك فإن الليزرات الديودية تعدُّ مناسبة جداً كمواد أولية في تقنية الاتصالات

الشكل (2): - GaAe) As (يزر نصف ناقل مكون من بنية غير متجانسة و أبعاد هندسية قياسية.

يوضح الشكل(2) تمثيلاً تخطيطياً لليزر شبه ناقل GaAe)As) ذي البنية غير المتجانسة والأبعاد الهندسية المنفردة . تحقق حاملات الشحنة في طبقة فعالة رقيقة جداً من مرتبة(μm) . وذلك بتطبيق كمون عبر الطبقة العلوية AuZn بخط تماس عرضه من مرتبة عدة ميكرومترات (μm) . تتوضع المنطقه الفعالة بين الطبقتين غير المتجانستين، حيث تصنع حاجزاً أمام حوامل الشحنات. عندما تكون شدة التيار المطبق كافية، فإننا نحصل على انعكاس السكانية داخل حجم المنطقة الفعالة. و تبدأ الحزمة الليزرية بالظهور بحيث تشكل المنطقة الفعالة نافذة خروج لهذه الحزمة كما أن بلورة المنطقة الفعالة. و تبدأ الحزمة الليزرية بالظهور بحيث تشكل المنطقة الفعالة نافذة خروج الهزه الحزمة كما أن بلورة المنطقة الفعالة و تبدأ الحزمة الليزرية بالظهور بحيث تشكل المنطقة الفعالة نافذه خروج الهزه الحزمة كما أن بلورة المنطقة الفعالة تملك معامل انكسار كبير جداً قياساً بعامل انكسار محيطيها لدرجة أن طرفي البلورة يملكان درجة انعكاسية إلى حد أنه لا داعي لوجود طبقة طلاء، كما أن طرفي المنطقة الفعالة يلعبان دور مرآتي المجاوبة الليزرية، حيث يحافظان على الفوتونات داخل المنطقة الفعالة . و التي المجاوبة الليزرية، حيث يحافظان على الفوتونات داخل المنطقة الفعالة بلعبان دور مرآتي تختلف عن بعضها بالمكونات الأساسية لكل منها.

فقط عدة قطع من الليزر الديودي، المعروفة لدينا بصف من الديودات، يمكنها حتى وقتنا من تقديم استطاعة عاليه تصل لأكثر من 3W.

قطعة واحدة من الديود الليزري كما في الشكل (2) تكون ذات استطاعة محدودة لا تتجاوز 3W. و يمكننا الحصول على استطاعة تصل إلى حوالى 100W من خلال صف من المناطق الفعالة الملتصقة في رقاقة واحدة. إن الإغلاق الأفضل بين قطع الليزرات الديودية هو الذي يعطي أقل عتبة تشغيل ممكنة.

كما ذكرنا سابقاً، نتعلق الخواص الفيزيائية لأنصاف النواقل بشكل عام، والديودات الليزرية بشكل خاص، بدرجة حرارتها. من هنا تأتي أهمية دراسة مميزات هذه الديودات بتابعية درجة الحرارة. حيث تعطى تابعية عصابات الطاقة (في معظم المواد نصف الناقلة) لدرجة الحرارة وفق العلاقة التجريبية لفارشني (Varshni) الآتية:

$$E_g(T)=E_g(T=0)-rac{lpha T^2}{T+eta}$$
حيث $lpha$ و eta تدعى متحولات فارشني القابلة للتحديد.

أهمية البحث وأهدافه:

نستخدم في دراسة الليزر Nd:YAG (مخبر الليزر للدراسات العليا والبحث العلمي – قسم الفيزياء – جامعة تشرين)، ديود ليزري ذو قطعة واحدة ذات استطاعة خرج مساوية 500mW. إضافة إلى ذلك فإن خواص الليزرات الديودية تتعلق بشكل كبير، من حيث طول موجة الليزر، بدرجة حرارة نصف الناقل (تقريبا 0.25nm/^oC)، وكذلك بشدة تيار الحقن (تقريباً 0.05nm/mA). فالمستخدم الذي يحتاج طول موجة محدد يجب ان يحافظ على درجة حرارة وتيار الحقن ثابتين خلال فترة حصوله على القيم. حيث طول موجة حزمة الليزر يمكن ان يتغير على التناوب مع درجة الحرارة. بحيث يزداد طول الموجة مع زيادة درجة الحرارة، وهذا عائد إلى كون معامل الانكسار و طول منطقة الوسط الفعال و بالتالي طول المجاوبة، تزداد مع زيادة درجة الحرارة. من هنا تأتي أهمية البحث الذي يهدف إلى دراسة خواص الديود الليزري بدلالة درجة حرارته، و كذلك بتابعية تيار الحقن.

طرائق البحث ومواده:

(P) قاعدة لتركيب السكة والعناصر.

(N) مقياس متعدد الأغراض مع مضخم (مقياس فرق كمون).

(L) راسم أشعة مهبطي 20 MHz مزود بقناتين حساسية كل منها 5 mV.

يتم تشغيل المنبع الليزري عن طريق الوحدة A كما يتم قياس شدة التيار ودرجة الحرارة من خلال شاشتين رقميتن منفصلتين على الوجه الأمامي للوحدة A.

كما يمكن ملاحظة شعاع الليزر باستخدام بطاقة إظهار الأشعة تحت الحمراء الموجودة مع الأدوات.

النتائج والمناقشة:

1− لقد درسنا أولاً تحولات فرق الكمون (المعبر عن استطاعة الديود الليزري) بدلالة درجة الحرارة من أجل شدات مختلفة لتيار الحقن تمتد من I= 50 mA وكانت النتائج كما هو مبين بالأشكال الثلاثة الآتية.

الشكل (4): تغيرات فرق الكمون بتابعية درجة الحرارة من أجل قيم مختلفة لتيار الحقن.

الشكل (5): تغيرات فرق الكمون بتابعية درجة الحرارة من أجل قيم مختلفة لتيار الحقن.

الشكل (6): تغيرات فرق الكمون بتابعية درجة الحرارة من أجل قيم مختلفة لتيار الحقن.

نلاحظ أنه من أجل تيارات حقن صغيرة نسبيا) (I= 50- 90 mA) أن فرق الكمون يبقى ثابتاً تقريباً بتابعية درجة الحرارة، لكن من أجل تيارات حقن متوسطه (I=200-400 mA) نلاحظ تغيرات ملموسة في قيمة الكمون، حيث تزداد بشكل ملحوظ عند قيم لدرجة الحرارة بين 20 – 30 درجة مئوية، و تبلغ قيمة عظمى عند درجة حرارة C = 25 كما هو واضح في المنحني الموافق mA MO II درجة ملوية، و تبلغ قيمة عظمى عند درجة حرارة (I=600-800 mA) فإن فرق الكمون يبقى ثابتاً بتابعية درجة الحرارة، مع ميل بسيط للانخفاض مع زيادة درجة الحرارة.

 $^{-2}$ من ثم درسنا فرق الكمون بتابعية تيار الحقن الشكل (7)، حيث لاحظنا زيادة حادة لفرق الكمون بتابعية تيار الحقن، من أجل القيم الصغيرة لتيار الحقن (I= 0 – 30 mA)، وزياده أقل حدة من أجل تيارات الحقن الأعلى من mA من من ما لاحظنا تغيرات صغيرة جداً بتابعية درجة الحرارة من أجل الدرجات (t= 20-40 °C).

 5^{-} أخيراً قمنا بدراسة تغيرات استطاعة خرج الديود الليزري بتابعية تيار الحقن وحصلنا على النتائج المبينة على الشكل (8)، حيث نلاحظ أنه من أجل تيارات حقن أقل من mA 200 فإن استطاعة الخرج تكون شبه معدومة، أخذين بعين الاعتبار عتبة الضجيج، ومن أجل قيم تزيد على 200 mA فإن الاستطاعة تزداد بشكل خطي تقريباً، مع أخذين بعين الاعتبار عتبة الضجيج، ومن أجل قيم تزيد على mA 200 فإن الاستطاعة تزداد بشكل خطي تقريباً، مع زيادة تيار الحقن. كما درسنا تغيرات الاستطاعة بتابعية تيار الحقن من أجل درجات حرارة مختلفة ولاحظنا أن التغيرات بتابعية درجة الحرارة ضعيفة وربما تتزاح قيم الجهد نحو اليمين مع ارتفاع درجة الحرارة مختلفة ولاحظنا أن التغيرات درجة من أجل t=20 و

الشكل (8): تغيرات استطاعة خرج الديود الليزري بتابعية تيار الحقن.

الاستنتاجات والتوصيات:

لقد بينا من خلال هذه الدراسة أهمية استخدام الديود الليزري في عمليات ضخ الليزر Nd:YAG حيث يستطيع أن يصدر ضوءاً ليزرياً شديداً بعرض طيفي ضيق جداً من مرتبة عدة نانومترات فقط. إن الطول الموجي الصادر عن مثل هذه الديودات يلائم عصابة امتصاص بلورة Nd:YAG بشكل جيد جداً. ويمكن استخدام هذه الطريقة للحصول على فعالية تصل إلى 80%–50. كما وجدنا من خلال هذه الدراسة المعطيات التي تحكم عمل الديود الليزري سواء فيما يتعلق بدرجة الحرارة أو تيار الحقن، وتعدُّ هذه النتائج جملة معطيات، يعتمد عليها، في أثناء استخدام الديود الليزري كمنبع ضخ لليزر Nd:YAG لاحقاً.

Ι	50 (mA)	Ι	70 (mA)	Ι	90 (mA)				
$t (^{0}C)$	V(mV, I=50mA)	$t ({}^{0}C)$	V(mV, I=70mA)	$t ({}^{0}C)$	V(mV, I=90mA)				
10	131	10	148.4	10	160				
15	132.3	15	148.5	15	160.2				
20	133	20	148.2	20	158.9				
25	132.4	25	148.7	25	161				
30	131.8	30	147.9	30	160.4				
35	131.4	35	147.3	35	159.8				
40	131.2	40	146.8	40	159.2				

ملحق يتضمن النتائج العددية للقياسات التجريبية المتعلقة بالنتائج:

الحقن.	مختلفة لتيار	أجل قيم	الحرارة من	بتابعية درجة	رق الكمون	(4): تغيرات فر	الجدول الموافق للشكل
--------	--------------	---------	------------	--------------	-----------	----------------	----------------------

الجدول الموافق للشكل (5): تغيرات فرق الكمون بتابعية درجة الحرارة من اجل قيم مختلفة لتيار الحقن.

t	V(mV,	t	V(mV,		V(mV,		V(mV,
(^{0}C)	I=400mA)	(^{0}C)	I=500mA)	$t ({}^{0}C)$	I=600mA)	$t ({}^{0}C)$	I=800mA)
10	402	10	437	10	452	10	467
15	399	15	435	15	454	15	465
20	417	20	443	20	452	20	464
25	412	25	440	25	450	25	463
30	404	30	438	30	449	30	462
35	393	35	435	35	447	35	460
40	372	40	431	40	445	40	459

الجدول الموافق للشكل (6): تغيرات فرق الكمون بتابعية درجة الحرارة من أجل قيم مختلفة لتيار الحقن.

$t ({}^{0}C)$	V(mV, I=200mA)	$t ({}^{0}C)$	V(mV, I=300mA)
10	197	10	257
15	195	15	244
20	193	20	244
25	202	25	238
30	196	30	234
35	195	35	230
40	194	40	227

الجدول الموافق للشكل (7): تغيرات فرق الكمون بتابعية تيار الحقن. وكذلك للشكل (8) : تغيرات استطاعة خرج الديود الليزري بتابعية تيار الحقن.

$t (^{0}C)$	$10^{0}(C)$		t (⁰ C)	20 [°] (C)		t (⁰ C)	$40^{0}(C)$	
	V(mV,	P(mW,		V(mV	P(mW,		V(mV,	P(mW,
I (mA)	$t=10^{0}C$	$t = 10^{\circ}C$)	I (mA)	,t=20 ⁰ C)	$t=20^{0}C)$	I (mA)	$t = 40^{\circ}C$)	$t = 40^{\circ}C$)
0	1.6	0	0	1.6	0	0	1.6	0
10	58	0.58	10	65.5	0.655	10	65.9	0.659
20	88	1.76	20	95	1.9	20	94.2	1.884
30	114	3.42	30	111.2	3.336	30	111.3	3.339
40	124.7	4.988	40	124	4.96	40	123.5	4.94
50	137.5	6.875	50	134	6.7	50	132.6	6.63
60	144.5	8.67	60	142.3	8.538	60	141	8.46

70	146.5	10.255	70	148.9	10.423	70	148	10.36
80	156	12.48	80	155.4	12.432	80	154.4	12.352
90	165.8	14.922	90	161.1	14.499	90	159.6	14.364
100	172.8	17.28	100	166.2	16.62	100	164.8	16.48
200	201	40.2	200	209	41.8	200	203	40.6
250	221	55.25	250	229	57.25	250	220	55
300	250	75	300	357	107.1	300	238	71.4
350	368	128.8	350	417	145.95	350	261	91.35
400	393	157.2	400	433	173.2	400	371	148.4
450	410	184.5	450	443	199.35	450	416	187.2
500	421	210.5	500	449	224.5	500	431	215.5
550	429	235.95	550	452	248.6	550	440	242
600	435	261	600	456	273.6	600	446	267.6
650	440	286	650	460	299	650	450	292.5
700	444	310.8	700	462	323.4	700	454	317.8
750	448	336	750	463	347.25	750	457	342.75
800	451	360.8	800	466	372.8	800	460	368

ملاحظة: ((إن دقة القياسات هي دقة الأجهزة المستخدمة نفسها، وهي من مرتبة 0,01))

المراجع:

- 1- DEVENSON J., R.CATHABARAD, TESSIER R., BARANOV A. N., *high temperature operation of* l = 3.3 *mm quantum cascade lasers*. Applied physics letters 91, 2007,141106.
- 2- TASCO V. DEGUFFROY N. BARANOV A. N., Tournie E. Satpati B., Trampert A., *Structural and optical properties of InSb quantum dots for mid –IR* applications, phys. Stat. sol. (b) 243, 15, 2006, 3959-3962.
- **3-** MATTIELLO M., Novel Helmholtz-based photoacoustic senser for trac gas detection at ppm level using GaInAsSB/GaAlAsSB lasers, journal of crystal growth, 2005, SAA-5260.
- 4- SCHÜLZGEN A. et al., "Distributed feedback fiber laser pumped by multimode laser diodes", Opt. Lett. 33 ,6, 2008,614.
- 5- K. Iga, "Surface-emitting laser its birth and generation of new optoelectronics field", IEEE J. Sel. Top. Quantum Electron. 6,6, 2000,1201
- 6- VURGAFTMAN I., et al. "Band parameters for III-V compound Semiconductor and their alloys", Applied Physics Review, 89, 11, 2001,5815.