X = دراسة الاستقرار النسبي لمماكبات الجزيئات 3-C₃H₃CXO، إذ إن H, F, Cl, Br, CH₃ المختلفة Ab initio المختلفة

الدكتور محمد عبد الحكيم بدوي*

(تاريخ الإيداع 4 / 5 / 2009. قُبل للنشر في 22 / 7 /2010)

🗆 ملخّص 🗆

درس الاستقرار النسبي لمماكبات الجزيئات 3-C₃H₃CXO؛ إذ إن $X = H, F, Cl, Br, CH_3$ ؛ إذ إن Netrophic CL, المنتقرار النسبي لمماكبات الجزيئات 2-C₃H₃CXO وحدث منحنيات الطاقة الكامنة (PES) المطرائق النظرية ملائنات الداخلي حول الرابطة المركزية للمجموعات CXO بالنسبة إلى حلقة البروبن، وكذلك دوران مجموعة المتيل في حالة الجزيء حول الرابطة المركزية للمجموعات CXO بالنسبة إلى حلقة البروبن، وكذلك دوران مجموعة المتيل في الدوران الداخلي دول الرابطة المركزية للمجموعات CXO بالنسبة المختلفة، وحدث منحنيات الطاقة الكامنة (PES) الدوران الداخلي دول الرابطة المركزية للمجموعات CXO بالنسبة إلى حلقة البروبن، وكذلك دوران مجموعة المتيل في حالة الجزيء دول الرابطة المركزية للمجموعات CXO بالنسبة إلى منتقرين المركزية المتيل المركزية المحموعات للمابقة مماكبين مستقرين المركزية المتيل المركزية المتيل المركزية المحموعات السابقة مماكبين مستقرين المركزية المحموعات المركزية المحموعات السابقة مماكبين مستقرين المركزية المحموعات المركزية المحمومي مركزية المحموعات السابقة مماكبين مستقرين المركزية المحمومي المركزية المحمومي المركزية المحمومي المحمومي المركزية المحمومي المحمومي المركزية المحمومي المركزية المحمومي المحمومي المومي وكذلك دوران محمومي المومي وكذلك دوران محمومي المتيل في حالة الجزيء دول الرابطة المركزية المحمومي المحمومي المركزية المحمومي وحمومي المركزية المحمومي المركزية المحمومي وكذلك دوران محمومي المتيل في حالة الجزيء دول المركزية المركزية المحمومي المركزية المركزية المركزية المركزية المركزية المحمومي وحمول المركزية المحمومي المركزية المحمومي المركزية المومي وحمومي المركزية المومي وحمومي وحمومي المركزية المركزية المركزية المومي وحمومي وحمومي المركزية المركزية المركزية المومي وحمومي وحمومي

قورنت نتائج هذا العمل مع تلك القيم النظرية والتجريبية للجزئيات c-C₃H₅CXO، إذ إن X=H,F,Cl,Br,CH₃، وأجريت بعض الحسابات النظرية المتعلقة بفرق الطاقة والحواجر الكمونية لبعض مماكبات هذه الجزيئات في هذا العمل بهدف المقارنة. وجد أنه في حالة X=CH₃، يحتفظ الجزيء coCh₃C(O)CH₃، ومماكبات بمماكباته cis و cis دلاماً للجزيء c-C₃H₅C(O)CH₃؛ إذ يتمتع بالمماكب cis، ومماكب آخر قريب من trans.

ا**لكلمات المفتاحية:** 3- حلقي البروين كربوكسألدهيد، هاليدات حمض 3- حلقي البروين كربوكسيليك، دوران داخلي، حسابات ab inito، تماكب.

^{*} أستاذ مساعد – قسم الكيمياء – كلية العلوم – جامعة تشرين – اللاذقية- سورية.

2010 (2) العدد (32) العدم الأساسية المجلد (32) العدد (2) العدد (32) مجلة جامعة تشرين للبحوث والدراسات العلمية – سلسلة العلوم الأساسية المجلد (32) العدد (2) العدد (3) Tishreen University Journal for Research and Scientific Studies - Basic Sciences Series Vol. (32) No. (2) 2010

Study of The Relative Stabilization of Isomers of Molecules 3-C₃H₃CXO, Where X= H, F, Cl, Br, CH₃, Using Different ab Initio Methods

Dr. Mohammad Abd Al-Hakim Badawi *

(Received 4 / 5 / 2009. Accepted 22 / 7 /2010)

\Box ABSTRACT \Box

The Study of The Relative Stabilization of Isomers of Molecules $3-C_3H_3CXO$, where X=H, F, Cl, Br, CH₃ was carried out using different ab initio Methods with different basis set. The potential energy surface (PES) of internal rotation of CXO groups relative to cyclopropene, and also of internal rotation of methyl group in molecule $3-C_3H_3C(O)CH_3$, was identified. It was found that the former molecules have two isomers, a trans and cis isomers. The relative stabilizations of these isomers are different as X change.

The results of this work were compared with theoretical and experimental results of the molecules c-C₃H₅CXO, where X=H, F, Cl, Br, CH₃. Some theoretical calculation related to energy differences and potential barriers of some isomers of these molecules were done in this work for the sake of comparison. It was found that where X=CH₃, the molecule c-C₃H₃C(O)CH₃ keep its isomers, cis and trans, contrary to molecule c-C₃H₅CXO, which has cis isomers and near trans isomers.

Key words: 3-Cyclopropenecarboxaldehed, 3-Cyclopropenecarboxylic Acid Halides, Internal rotation, Ab initio calculation, isomerization.

^{*} Associate Professor, at chem. Department, Faculty of science, Tishreen University, Lattakia, Syria.

مقدمة:

درس الاستقرار النسبي لمركبات حلقي بروبيل كربونيل (X =H, F,Cl,CH₃ ،c-C₃H₅CXO)، بصورة مكثفة تجريبياً في أعمال كثيرة بوساطة تحليل الأطياف تحت الحمراء وأطياف رامان، ولوحظ اختلاف واضح في الاستقرار النسبي بالنسبة إلى الكلوريد X = Cl [1-3] والفلوريد X = F [5,4]، إذ يكون المماكب cis أكثر استقراراً $\Delta H \ \in \ 1 \ 0 \ \pm \ ^{-1}$ ، من المماكب trans، وتبلغ نسبته المئوية نحو 62% و 61%، 1^{-1} $\pm \ 0 \ \pm \ ^{-1}$ و $\Delta H = (97 \pm 11 \text{ cm}^{-1})$ ، عند درجة الحرارة العادية على الترتيب. في حين يكون المماكب anti في حالة ن عند $\Delta H = (95 \pm 8 \text{ cm}^1)$ ، أكثر استقراراً من المماكب syn، وتبلغ نسبته المئوية نحو $(61)^{\circ} X = H$ ، عند (7,6) X = Hدرجة الحرارة العادية. ومن أجل حلقى البروبيل ميتيل كيتون c-C3H5C(O)CH3، وجد ديوريغ وزملاؤه [9,8] أن المماكب الأكثر استقراراً يمثل cis، ويكون المماكب الثاني المستقر بالقرب من المماكب trans، ويبلغ فرق الطاقة بينهما نحو $\Delta H = 260 \pm 26~{
m cm}^{-1}$ عند درجة حرارة الغرفة، وبذلك تبدي مجموعة الميتيل تأثيراً كبيراً في الاستقرار النسبي. إلا أن الدراسات التجريبية والنظرية لمركبات حلقي البروبن كربونيل ,C3H3COX, X = H, Cl, F, Br) (3-C3H3COX, X (CH₃) تعد شبه معدومة، باستثناء الدراسة النظرية في العملين [11,10] باستخدام نظريتي DFT/B3LYP و MP2 من أجل حلقي البروبن كربوكسألدهيد (X=H) وحلقي البروين كربونيل فلوريد (X=F)، إذ تشير الدراسة النظرية إلى أن لهذين الجزيئين أيضاً مماكبان مستقران: cis و trans، ويكون المماكب cis (تكون الرابطة C=O في هذا المماكب مجاورة للحلقة الثلاثية) أكثر استقراراً من المماكب trans [الشكل (1)]. سندرس في هذا العمل بنية الجزيئات المذكورة أعلاه باستخدام طرائق الـ ab initio المختلفة، وسنبين تأثير استخدام التوابع الذرية الأساسية المختلفة في تحديد فرق الطاقة بين المماكبات، وكذلك تأثيرها في سطوح الطاقة الكامنة للدوران الداخلي حول الرابطة المركزية لهذه الجزيئات.

الشكل (1): بنية المماكبين cis و trans للجزيئات المدروسة؛ إذ ينتمي كل منهما إلى المجموعة النقطية للتناظر Cs.

أهمية البحث وأهدافه:

يهدف هذا البحث إلى تحديد البنى المستقرة لمركبات حلقي بروبيل كربونيل (S-C₃H₃COX؛ إذ إن DFT يهدف هذا البحث إلى تحديد البنى المستقرة لمركبات حلقي بروبيل كربونيل (TF, Br, CH₃) DFT و DFT النظريات DFT [12]، و MP2 [13]، و MP2 [13]، و [12]، و MP2 [13]، و (6.5) MP2 [14]، و الطاقة بين المماكبات المستقرة لهذه الجزيئات، وكذلك تحديد سطوح الطاقة الكامنة للدوران الداخلى للرابطة المركزية، وكذلك للمجموعة S-C₃H₃COX (12]، باستخدام الطرائق المركبات حلقي بروبيل كربونيل (CASSCF) الماست

طرائق البحث ومواده:

سنستخدم من أجل هذه الحسابات البرنامجين PC GAMESS [17] و GAUSSIAN-03 [17] من أجل تحديد الأبعاد الفراغية للمركبات 3-C₃H₃CXO، حيث X = H, Cl, F, Br, CH₃، وسطوح الطاقة الكامنة باستخدام الطريقة (MP2/6-31(d)، وتأويل هذه السطوح بوساطة سلسلة فورييه، وتحديد معاملاتها.

النتائج والمناقشة:

1. البنية الفراغية:

لوحظ خلال دراسة البنية الفراغية لجزيئات حلقي البروبن كربوكسألدهيد باستخدام طرائق نظرية مختلفة، وكذلك توابع ذرية مختلفة، أن الأبعاد الفراغية المحددة بالطريقتين MP2/cc-pvdz و QCISD/cc-pvdz قريبة من القيم التجريبية لجزيء مشابه [الجدولين (1) و (2)]، فمثلاً : إن طول الرابطة C=O المحدد تجريبياً لـ c-C₃H₅CHO، يبلغ نحو Å 1.216 Å فهو منسجم جيداً مع طول الرابطة نفسها من أجل 3-C₃H₃CHO المحدد باستخدام الطريقة MP2/cc-pvdz (1)، وباستخدام 3-C₃H₃CHO L215 Å) QCISD/cc-pvdz، أي باستخدام (2)، ولكن بضم التوابع الانتشارية في الطريقة MP2، أي باستخدام التوابع aug-cc-pvdz تتزايد طول الرابطة بمقدار Å 0.008. ولوحظ أيضاً، من أجل c-C2H5CFO، أن طول الرابطة C1-C2 المحدد في العمل [19] يبلغ نحو Å 1.490 و Å 1.492 لـ trans و cis على الترتيب، وهو يتطابق تماماً مع طول الرابطة لمماكبي الجزيء C₃H₃CFO في حال استخدام الطريقة MP2/aug-cc-pvdz [الجدول (1)]. وجد في العملين [20,19] من أجل c-C₃H₅CClO أن طولي الرابطة C=O و C=O يبلغان نحو Å 1.197 و Å 1.506 (قيمة وسطية) على الترتيب، والعائدين للمماكب trans، في حين يبلغ طولي هاتين الرابطتين من أجل C₃H₃CClO نحو Å 1.197 و Å 1.499 في حال استخدام الطريقة السابقة، وعند ضم التوابع الانتشارية، أي عند استخدام الطريقة MP2/aug-cc-pvdz، تتزايد طول الرابطة C=O بمقدار Å 0.005 في حين تتتاقص طول الرابطة $\mathrm{C_1-C_2}$ بمقدار Å 0.004 ولكن عند استخدام النظرية DFT، لوحظ أنه كلما كانت التوابع الذرية الأساسية المستخدمة أعقد، صعرت أطوال الروابط، فمثلاً عند استخدام التوابع الذرية (d,p) 6-31G تبلغ طول الرابطة C=O نحو Å 1.213، ويتناقص هذا الطول بمقدار Å 0.007 في حال استخدام -6 (d,p)، وبمقدار Å 0.005 في حال استخدام (G(d, p-6.311++G(d, p-6. ولوحظ الأمر نفسه في حال استخدام) النظرية CASSCF. وأخيراً نجد من الحسابات النظرية للأبعاد الفراغية للجزيء CASSCF. وأخيراً نجد من الحسابات النظرية الطريقتين MP2 و QCISD، والتوابع الذرية الأساسية cc-pvdz، أن طول الرابطة C=O (Å 1.225 و 1.220).

أكبر من القيم الموافقة للمتبادلات الأخرى، وتكون قيمته قريبة جداً من القيمة الموافقة للمماكب cis في حالة -c C₃H₅C(O)CH₃؛ إذ تبلغ نحو Å 1.222 [20].

			r r	~ \		L(-)				
Denemators	X=	X=H		=F	X=Cl		X=Br		X=CH ₃	
Parameters	cis	trans	cis	trans	cis	trans	cis	trans	cis	trans
R(C = O)	1.220	1.218	1.197	1.197	1.197	1.197	1.195	1.194	1.225	1.226
$R(C_3 = C_4)$	1.309	1.311	1.310	1.310	1.299	1.311	1.311	1.311	1.310	1.313
$R(C_1 - C_2)$	1.499	1.492	1.492	1.490	1.492	1.499	1.499	1.500	1.510	1.504
$R(C_2 - C_3)$	1.527	1.530	1.524	1.524	1.514	1.520	1.524	1.518	1.526	1.529
$R(C_1 - X)$	1.120	1.124	1.365	1.366	1.801	1.821	1.997	2.01	1.517	1.521
$R(C_2 - H_{\Box})$	1.100	1.099	1.097	1.098	1.090	1.100	1.096	1.100	1.101	1.101
$R(C_3 - H_1)$	1.086	1.087	1.087	1.087	1.077	1.087	1.087	1.087	1.087	1.088
$\Box OC_1C_2$	123.7	124.6	128.2	127.5	125.7	126.2	127.9	126.7	121.4	120.4
$\Box XC_1C_2$	115.0	113.3	110.6	111.5	113.7	113.0	111.1	110.0	115.9	117.5
$\Box XC_1O$	121.3	122.2	121.2	120.9	120.6	120.8	121.1	120.5	122.8	122.2
$\Box H_{\Box}C_{2}C_{1}$	115.6	114.3	115.0	112.0	110.9	110.2	115.2	110.0	116.1	120.8
$\Box C_1 C_2 C_3$	118.0	118.5	117.4	120.2	121.3	121.5	116.8	121.5	117.8	120.8
$\Box C_3 C_2 C_4$	50.7	50.7	50.9	50.9	50.8	51.1	50.9	51.1	50.9	50.8
$\Box C_2 C_3 C_4$	64.6	64.6	64.5	64.5	64.6	64.5	64.5	64.4	64.6	64.6
$\Box H_{\Box}C_{3}C_{2}$	143.6	144.2	143.3	143.6	143.1	143.4	143.1	143.3	143.8	144.4
$\Box H_{\Box}C_{2}C_{3}H_{1}$	76.8	70.7	74.7	73.1	72.0	73.6	73.7	73.7	77.7	71.5

(X =H, F,Cl,CH₃ ،3-C₃H₃CXO) الجدول (1): الأبعاد الفراغية لمماكبي مركبات حلقي البروين كربونيل (MP2/cc-pvdz).

الجدول (2): الأبعاد الفراغية لمماكبي مركبات حلقي البروين كربونيل (X =H, F,Cl,CH₃ ،3-C₃H₃CXO) [انظر الشكل (1)]، المحسوبة باستخدام الطريقة QCISD/cc-pvdz.

Deremeters	X	=H	X	=F	X=Cl		X=Br		X=CH ₃	
rarameters	cis	trans	cis	trans	cis	trans	cis	trans	cis	trans
R(C = O)	1.216	1.215	1.193	1.193	1.194	1.194	1.192	1.191	1.220	1.221
$R(C_3 = C_4)$	1.307	1.309	1.307	1.307	1.307	1.308	1.308	1.308	1.307	1.310
$R(C_1 - C_2)$	1.509	1.501	1.499	1.497	1.506	1.506	1.508	1.508	1.516	1.511
$R(C_2 - C_3)$	1.527	1.530	1.524	1.525	1.524	1.520	1.523	1.518	1.526	1.529
$R(C_1 - X)$	1.122	1.125	1.359	1.360	1.811	1.815	1.990	1.997	1.522	1.525
$R(C_2 - H_{\Box})$	1.103	1.102	1.099	1.099	1.097	1.101	1.097	1.101	1.102	1.102
$R(C_3 - H_1)$	1.088	1.089	1.088	1.088	1.088	1.088	1.088	1.088	1.088	1.089
$\Box OC_1C_2$	123.9	124.4	128.2	127.3	127.1	125.5	127.3	125.8	121.5	120.2
$\Box XC_1C_2$	113.7	113.7	110.8	111.9	111.9	113.9	114.0	114.0	116.0	117.9
$\Box XC_1O$	121.1	121.9	121.0	120.8	121.0	120.6	120.8	120.2	122.5	122.0
$\Box H_{\Box}C_{2}C_{1}$	114.8	113.7	114.4	111.6	114.9	109.8	114.6	109.5	115.4	111.6
$\Box C_1 C_2 C_3$	118.5	118.9	117.8	120.4	117.3	121.9	117.3	122.0	118.3	121.3
$\Box C_3 C_2 C_4$	50.7	50.6	50.8	50.8	50.8	51.0	50.8	51.0	50.7	50.7
$\Box C_2 C_3 C_4$	64.7	64.7	64.6	64.6	64.6	64.5	64.6	64.5	64.6	64.6
$\Box H_{\Box}C_{3}C_{2}$	143.6	144.2	143.4	143.7	143.3	143.6	143.4	143.6	143.8	144.5
$\Box H_{\Box}C_{2}C_{3}H_{1}$	76.5	70.8	74.5	73.0	74.1	73.4	73.7	73.5	77.3	71.6

•يعبر عن أطوال الروابط بالأنغستروم، والزوايا بالدرجة.

2. فرق الطاقة بين المماكبات، والحواجز الكمونية:

نلاحظ من الجدولين (3 و 4)، عند استخدام الطريقة MP2 بضم مختلف التوابع الذرية (باستثناء ضم التوابع الانتشارية)، أن المماكب trans في الحالات X= H, F, Cl, Br للجزيئات X= H, F, Cl, Br أكثر استقراراً من المماكب cis، أما بالنسبة إلى الجزيئات c-C₃H₅CXO يكون المماكب trans أكثر استقراراً من cis عندما X = H، في حين يكون المماكب cis أكثر استقراراً من trans في الحالات الأخرى، أي عندما X = F, Cl, CH₃. نجد أيضاً أن المماكب الثاني في حالة X = F, Cl, CH₃ وX = F, Cl, CH، في حين يكون المماكب الثاني في حالة c-C₃H₅C(O)CH₃ بالقرب من trans (إذ تكون الزاوية الثنائية السطح H_αC₂C₁O يكون مفتولة بدرجة قدرها ٢٥ 🗌 وتكون مجموعة الميتيل مفتولة بدرجة قدرها 19° 🗌 بالنسبة إلى الرابطة C = O)، وبذلك لا تبدى مجموعة الميتيل في الجزيء C3H3C(O)CH3 تأثيراً في الاستقرار البنيوي للجزيء C3H3C(O)CH3. تبين جميع الحسابات النظرية أن فرق الطاقة بين المماكبين cis و trans يأخذ أكبر قيمة في حالة X = H مقارنة ببقية المتبادلات لـ C₃H₃CXO، في حين يكون هذا الفرق الكبير عائداً للحالة $X = CH_3$ لـ c-C₃H₅CXO. فضلاً عن ذلك، نجد أن ضم التوابع الانتشارية يؤثر في الاستقرار النسبي بين $X = CH_3$ المماكبات في حالة c-C₃H₅CHO، في حين يزيد هذا الضم من فرق الطاقة بين المماكبات في حالة 3-C3H3CHO، وتصبح الحالة عكسية عندما X = F. نجد عند استخدام الطريقة MP2 باستخدام التوابع cc-pvdz أن فروق الطاقة بين المماكبات في حالة c-C3H5CXO لا تتوافق مع القيم التجريبية العائدة لجميع المتبادلات، ولكن عند استخدام التوابع auq-cc-pvdz، يصبح الفرق قريب من القيمة التجريبية بالنسبة إلى X = F فقط، [انظر الجدول (3)].

الجدول (3): فرق الطاقة بين المماكبات والحواجز الكمونية للحالات الانتقالية V (المعبر عنها بـ cm⁻¹) المحسوبة بالطرائق النظرية المختلفة بضم توابع ذرية مختلفة للجزيئات 3-C₃H₃CXO.

الطرائق النظرية والتوابع الذرية		$\Box E$	$E = E_{\rm cis} - E_{\rm cis}$	E _{trans}		$V(\text{trans} \rightarrow \text{cis})$				
المستخدمة	Н	F	Cl	Br	CH ₃	Н	F	Cl	Br	CH ₃
RHF/6-31G(d)	486	68	-30	158	-92	2421	2124	1778	1841	1891
RHF/6-31G(d,p)	488	67	-32	160	-97	2414	2109	1768	1829	1882
RHF/6-311G(d,p)	492	27	-109	-74	-130	2368	2024	1651	1578	1817
RHF/6-311++G(d,p)	574	-15	-21	-20	-80	2308	1887	1615	1523	1710
CASSCF/6-31 (d)	469	192	71	244	-6	4811	3301	1536	1567	3968
CASSCF/6-31 (d,p)	471	191	70	243	-11	4806	3291	1527	1553	3950
CASSCF/6-311 (d,p)	472	154	-3	17	-51	4705	3204	1436	1323	3440
DFT/B3LYP/6-31G(d)	434	114	36	257	-64	2652	2213	1968	2104	2066
DFT/B3LYP/6-31G(d,p)	432	112	37	255	-73	2646	2199	1961	2093	2062
DFT/B3LYP/6-311G(d,p)	492	44	-34	35	-128	2571	2069	1837	1805	1979
DFT/B3LYP/6-311++G(d,p)	499	-38	42	76	-72	2485	1888	1786	1742	1845
MP2/6-31G(d)	331	85	98	469	-16	2414	2154	1951	2119	1975
MP2/6-31G(d,p)	321	84	86	454	-30	2451	2140	1939	2102	1976
MP2/6-311G(d,p)	322	0.5	58	216	-26	2457	2098	1957	1946	1962
MP2/6-311++G(d,p)	404	-92	256	336	25	2360	1876	1931	1899	1824
MP2/cc-pvdz	349	41	87	229	12	2521	2162	1973	-	-
MP2/auq-cc-pvdz	445	-65	185	335	132	2408	1886	1944	-	-
QCISD/31-6G(d,p)	362	116	51	319	-27	-	-	-	-	-
QCISD/cc-pvdz	382	90	17	104	7	-	-	-	-	-

		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				•					
s structure to the end th	$\Box E = E_{\rm cis} - E_{\rm trans} ({\rm in  cm^{-1}})$										
الطرائق النظرية والنوابع الذرية		3-C ₃ F	I ₃ CXO		c-C ₃ H ₅ CXO ^(a)						
المسحدمة	Н	F	Cl	CH ₃	H[7]	F[4]	Cl[2]	CH ₃ [9]			
RHF/6-31G(d)	486	68	-30	-92	104	-17	-518	-1038			
RHF/6-31+G(d)	577	-13	-16	-81	53	-97	-398	-897			
DFT/B3LYP/6-31G(d)	434	114	36	-64	-140	42	-351	-1023			
DFT/B3LYP/6-31G(d,p)	432	112	37	-73	-136	45	-344	-1034			
DFT/B3LYP/6-311G(d,p)	492	44	-34	-128	-129	-5	-360	-1030			
DFT/B3LYP/6-311+G(d,p)	497	-36	38	-79	75	-88	-225	-821			
DFT/B3LYP/6-311++G(d,p)	499	-38	42	-72	79	-88	-207	-819			
MP2/6-31G(d)	331	85	98	-16	-347	31	-394	-1118			
MP2/6-31G(d,p)	321	84	86	-30	-334	40	-387	-1107			
MP2/6-311G(d,p)	322	0.5	58	-26	-301	-58	-281	-1074			
MP2/6-311+G(d,p)	400	-83	224	3	-88 ^(c)	-101 ^(b)	-143 ^(b)	-885 ^(c)			
MP2/6-311++G(d,p)	404	-92	256	25	127	-105	-119	-884			
MP2/cc-pvdz	349	41	87	12	-323	-2	-230	-1092			
MP2/auq-cc-pvdz	445	-65	185	132	-83	-108	-28	-810			
Experimental	-	-	-	-	$98\pm8$	-97 ± 11	$-102 \pm 13$	$-269\pm26$			

الجدول (4): مقارنة بين فروق الطاقة لمماكبات الجزيئات  $X = H, F, Cl, Br, CH_3 \cdot c-C_3H_5CXO$  و  $X = H, F, Cl, Br, CH_3 \cdot c-C_3H_5CXO$  و  $X = H, F, Cl, Br, CH_3 \cdot c-C_3H_5CXO$  والطرائق النظرية المختلفة بضم توابع ذرية مختلفة أبضاً.

^(a) قمنا من أجل هذه الجزيئات بحساب فروق الطاقة بين المماكبات بوساطة بعض الطرائق والتوابع الذرية المستخدمة من أجل الجزيئات المدروسة بهدف المقارنة، أما قيمها التجريبية فأخذت من المراجع المذكورة في هذا الجدول. ^(d) تبلغ القيمة المحسوبة بالطريقة (L, (d) تبلغ القيمة المحسوبة بالطريقة X=F و X=Cl و X=F و 102 cm⁻¹ و 133cm⁻¹ - X=Cl (d,p) (b) (102 cm⁻¹) (102 c

لحساب MP2 في الطريقة MP2 في الطريقة G(2df, 2dp) لحساب لاحظ ديوريغ وزملاؤه [21] عند استخدام التوابع الذرية ( $\Delta E = -37 \text{ cm}^{-1}$ ) c-C₃H₅CHO في الطريقة مع القيمة التجريبية فرق الطاقة من أجل  $\Delta E = -37 \text{ cm}^{-1}$ ) مع القيمة التجريبية من أجل ( $\Delta H = -98 \pm 8 \text{ cm}^{-1}$ )، في حين يتوافق هذا الفرق ( $\Delta E = -102 \text{ cm}^{-1}$ ) مع القيمة التجريبية من أجل ( $\Delta H = -98 \pm 8 \text{ cm}^{-1}$ ).

 $C_1 - C_2$  . سطوح الطاقة الكامنة للدوران الداخلي حول الرابطة المركزية.

من أجل تحديد سطوح الطاقة الكامنة للدوران الداخلي للجزيئات استخدمنا الطريقة (MP2/6-31G(d,p)، وذلك بتغيير الزاوية الثنائية السطح  $OC_1C_2H_{\alpha}$  بتغيير الزاوية الثنائية السطح  $\Delta C_1C_2H_{\alpha}$  بمندنيات سطح الطاقة الكامنة المحددة بالطرائق المذكورة من أجل 3-C_3H_3CXO، حيث X = H, F, Cl, Br, CH . حيث 3-C_3H_3CXO.



الشكل (2): سطوح الطاقة الكامنة للدوران الداخلي حول الرابطة  $C_1 - C_2$  المحدد بوساطة الطريقة (2): سطوح الطاقة الكامنة للدوران (2): سطوح الطاقة الكامنة المراطة (2): MP2/6-31G(d)

نلاحظ من الشكل (2) أنه عند استخدام الطريقة (MP2/6-31G(d) يكون المماكب cis (الذي يقع عند زاوية فرها 180^o) أكثر استقراراً من المماكب trans عندما  $X = CH_3$  ويحصل العكس من أجل جميع المتبادلات الأخرى. يمكن تأويل سطح الطاقة الكامنة للدوران الداخلي حول الرابطة المركزية  $C_1 - C_2$  بالعبارة العامة الآتية:

$$V(\varphi) = \frac{1}{2} \sum_{k=1}^{6} V_k (1 - \cos k\varphi)$$

وذلك إذا كان أحد مماكبات الجزيء متناظراً (أي المماكب الذي تكون فيه الزاوية  $OC_1C_2H_{lpha}$  مساوية الصفر أو 180⁰)، ويحقق المماكب trans للجزيء المدروس ذلك الشرط، ويوضح الجدول (5) قيم  $V_k$  المحسوبة استناداً إلى معطيات الطريقة (MP2/6-31G(d) بإجراء عملية التهيئة التربيعية التي تعتمد على طريقة نيوتن – رفسن.

(u) المراجة مسي "جروين حروين (u) المراجة المسي "جروين (u)											
المتحولات	X = H	$\mathbf{X} = \mathbf{F}$	X = Cl	X = Br	$X = CH_3$						
$V_1$	-302.9	266.8	-104.4	-113.5	37.4						
$V_2$	1946.2	1928.6	1887.9	2100.0	2272.9						
$V_3$	240.8	157.7	204.7	200.2	287.0						
$V_4$	-47.2	-86.0	-93.5	-70.6	-167.0						
$V_5$	44.1	0.65	-4.59	-2.07	3.30						
$V_6$	0.17	-8.40	-1.31	-2.55	5.269						
$\Delta E$	327.71	84.60	95.71	425.21	-18.02						

الجدول (5): متحولات سلسلة فورييه، وفروق الطاقة (المقدرة بـ ¹⁻m)) المحسوبة استناداً إلى معطيات الطريقة (5): متحولات سلسلة فورييه، وفروق الطاقة (10×10, 10×10)). لمركبات حلقى البروين كريونيل (3-C₃H₃CXO).

4. سطوح الطاقة الكامنة لدوران مجموعة الميتيل CH3:



الشكل (3): بنية المماكبين cis و cis للجزيء 3-C₃H₃C(O)CH₃.



الشكل (4): سطح الطاقة الكامنة لدوران مجموعة الميتيل CH₃ في الجزيء 3-C₃H₃C(O)CH₃ . بالنسبة إلى المماكب cis)، والمماكب trans (d).

c-C₃H₅C(O)CH₃ ليفضل إجراء المقارنة بين القيم النظرية للحاجز الكموني لمماكبي الجزيئين  $C-C_3H_5C(O)CH_3$  و و 3-C₃H₃C(O)CH₃ باستخدام الطريقة النظرية نفسها. لذلك قمنا في هذا العمل، بتحديد القيمة النظرية ل للمماكب c-C₃H₅C(O)CH₃ باستخدام الطريقة النظرية نفسها؛ أي الطريقة (d,p)، ووجد أنها تساوي ¹⁻ 408 cm وهي نتطابق جيداً مع القيمة التجريبية (¹⁻ 413 cm)؛ إذ يبلغ الفرق نحو ¹⁻ 5 cm. وهكذا يكون الفرق بين قيمتي  $V_3$  النظريتين للجزيئين نحو ¹⁻ 51 cm. ونستدل من ذلك أن جهد حلقة البروبيل تبدي تأثيراً أكبر بقليل في انزياح الكثافة الإلكترونية عن مجموعة المتيل مما يبديه جهد حلقي البروين.

#### الاستنتاجات والتوصيات:

إن نتائج هذا البحث يقدم تتبؤات مسبقة ومفيدة لتساعدنا على تحليل النتائج التجريبية في المستقبل. فضلاً عن ذلك، إن استخدام الطرائق المختلفة مع توابع ذرية أساسية مختلفة تكون ضرورية في مثل هذه الحالات من الجزيئات، وذلك لتفسير سطوح الطاقة للدوران الداخلي للجزيئات حول الرابطة الأحادية بالنسبة إلى مجموعة محددة في الجزيء، وكما لاحظنا من نتائج الدراسات النظرية والتجريبية لمماكبات الجزيئات c-C₃H₅CXO [الجدول (4)] أن كل طريقة تعطي قيمة إما أن تكون مطابقة للقيمة التجريبية، وإما أن تكون مختلفة عنها ليس بالقيمة فحسب، وإنما بالإشارة أيضاً.

يمكن التوصل من هذه الدراسة إلى النتائج المهمة الآتية:

 يؤدي استخدام التوابع الانتشارية إلى نتائج ليس بالضرورة أن تكون متوافقة مع التجربة، وفي معظم الحالات تكون النتيجة غير مرضية، وإنْ كانت النظرية المستخدمة مع توابع ذرية أعقد، كما هو واضح من مقارنة القيم المحسوبة للجزيئات c-C₃H₅C(O)CH₃ مع القيم التجريبية الموافقة، وقد تعطي التوابع الذرية البسيطة نتيجة مرضية من حيث تطابقها مع النتيجة التجريبية.

2. لجميع الجزيئات المدروسة X = H, F, Cl, Br, CH₃ ، 3-C₃H₃CXO ، مماكبان مستقران د trans و د s و د النتيجة تكون مختلفة في حالة الجزيء cis الجزيء trans ويختلف الاستقرار النسبي باختلاف X، وهذه النتيجة تكون مختلفة في حالة الجزيء cis د trans و مماكب آخر قريب من trans.

3. إن فرق الطاقة بين المماكبات في حالة X = H من أجل الجزيء  $C_3H_3CXO$  أكبر مما هو في حالة  $X = C_3H_3CXO$  أكبر مما هو في حالة  $X = CH_3$  الجزيء و $c-C_3H_5C(O)CH_3$ .

المراجع:

- [1] DURIG, J. R.; BIST, H. D.; SAARI, S. V.; SMOOTER, J. A.; LITTLE, T. S.; Vibrational and conformational studies of cyclopropylcarbonyl chloride. Journal of Molecular Structure, V. 99, Issues 3-4, 1983, 217-233.
- [2] DURIG, J. R.; WANG, AI-YING, LITTLE, T. S. Conformational stability, barrier to internal rotation, structural parameters, ab initio calculations, and vibrational assignment of cyclopropylcarbonyl chloride. Journal of Molecular Structure, V. 269, Issues 3-4, 1992, 285-308.
- [3] DURIG, J. R.; SHEN, S.; ZHAO, W.; ZHOU, L.; Conformational studies of cyclopropylcarbonyl chloride from temperature-dependent FT-IR spectra of xenon solutions. Journal of Molecular Structure, V. 407, Issue 1, **1997**, 11-26.
- [4] DURIG, J. R.; WANG, AI-YING, LITTLE, T. S. Far-infrared spectrum, barriers to internal rotation, structural parameters, and vibrational assignment of cyclo-propylcarbonyl fluoride. Journal of Molecular Structure, V. 244, **1991**, 117-137.
- [5] DURIG, J. R.; SHEN, S.; ZHAO, W.; ZHOU, L. Conformational studies of cyclopropylcarbonyl fluoride from temperature dependent FT-IR spectra of xenon solutions. Chemical Physics, V. 213, Issues 1-3, 1996, 165-179.
- [6] DURIG, J. R.; LITTLE, T. S. vibrational and Conformational studies of cyclopropancorboxaldhyde. Croatica chem. Acta, V. 61, **1988**, N. 3, P. 529-549.
- [7] DURIG, J. R.; SHEN, S. Conformational studies of cyclopropane carboxaldehydehyde from temperature-dependent FT-IR spectra of xenon solutions. Spectrochimica Acta, Part A, 2000, 2545-2561.
- [8] DURIG, J. R.; BIST, H. D.; LITTLE, T. S. Vibrational spectra and conformational stability of cyclopropylmethyl ketone Journal of Molecular Structure. V. 116, Issues 3-4, 1984, 346-359.
- [9] WANG; AI-YING, LITTLE; T. S., DURIG; J. R., Spectra and structure of small ring compounds. LXII. Conformational stability, structural parameters, ab initio calculations and vibrational assignment of cyclopropylmethyl ketone. Spectrochimica Acta, Part A: Molecular Spectroscopy, V. 50, Issue 3, 1994, 595-607.
- [10]BADAWI, H. M.; FÖRNER, W.; AL-RAYYESA, A. A. An Investigation of Structural Stability and Internal Rotation in 3-Cyclopropenecarboxaldehyde and 3-Cyclopropenecarboxylic Acid Fluoride by ab initio Calculations. J. Mol. Model. 1998, V. 4, 158 – 164.
- [11]BADAWI, H. M.; FÖRNER, W. Vibrational spectra and potential energy distributions for 3-cyclopropenecarboxaldehyde by density functional and normal coordinate calculations. Journal of Molecular Structure: THEOCHEM, V. 507, N. 1, 2000, 207-215.
- [12] PARR, R. G.; YANG, W. Density Functional Theory of Atoms and Molecules, Oxford Scientific, 1989.
- [13] ANDERSSON, K.; MALMQVIST, P.; ROOS, B. O. "Second-Order Perturbation Theory with a Complete Active Space Self-Consistent Field Reference Function," J. Chem. Phys., 96, 1992, 1218-1226.
- [14] SCHMIDT, M. W.; GORDON, M. S. *The Construction and Interpretation of MCSCF wavefunctions*. Ann. Rev. Phys. Chem. 49, 1998, 233-266.

- [15] POPLE, J. A.; HEAD-GORDON, M.; FOX, D. J.; RAGHAVACHARI, K.; CURTISS, L. A. "Gaussian-1 Theory: A General Procedure for Prediction of Molecular Energies," J. Chem. Phys., 90, 1989, 5622-5629,
- [16] NEMUKHIN, A. V.; GRIGORENKO, B. L.; GRANOVSKY, A. A. Molecular modeling by using the PC GAMESS program: From diatomic molecules to enzymes. Moscow University Chemistry Bulletin. Vol. 45, No. 2, 2004, 75.
- [17] FRISCH, M.J.; TRUCKS, G.W.; SCHLEGEL, H.B.; SCUSERIA, G.E.; ROBB, M.A.; CHEESEMAN, J.R.; MONTGOMERY, J.A.; VREVEN, JR.T.; KUDIN, K.N.; BURANT, J.C.; MILLAM, J.M.; IYENGAR, S.S.; TOMASI, J.; BARONE, V.; MENNUCCI, B.; COSSI, M.; SCALMANI, G.; REGA, N.; PETERSSON, G.A.; NAKATSUJI, H.; HADA, M.; EHARA, M.; TOYOTA, K.; FUKUDA, R.; HASEGAWA, J.; ISHIDA, M.; NAKAJIMA,T.; HONDA, Y.; KITAO, O.; NAKAI, KLENE, M.; LI, X.; KNOX, J.E.; HRATCHIAN, H.P.; CROSS, J.B.; H.: BAKKEN, V.; ADAMO, C.; JARAMILLO, J.; GOMPERTS, R.; STRATMANN, R.E.; YAZYEV, O.; AUSTIN, A.J.; CAMMI, R.; POMELLI, C.; OCHTERSKI, J.W.; AYALA, P.Y.; MOROKUMA, K.; VOTH, G.A.; SALVADOR, P.; DANNENBERG, J.J.; ZAKRZEWSKI, V.G.; DAPPRICH, S.; DANIELS, A.D.; MALICK, STRAIN, M.C.; FARKAS, O.; D.K.; RABUCK, A.D.; RAGHAVACHARI, K.; FORESMAN, J.B.; ORTIZ, J.V.; CUI, Q.; BABOUL, A.G.; CLIFFORD, S.; CIOSLOWSKI, J.; STEFANOV, B.B.; LIU, G.; LIASHENKO, A.; PISKORZ, P.; KOMAROMI, I.; MARTIN, R.L.; FOX, D.J.; NANAYAKKARA. KEITH. T.; AL-LAHAM, M.A.; PENG, C.Y.; CHALLACOMBE, A.; M.; GILL, P.M.W.; JOHNSON, B.; CHEN, W.; WONG, M.W.; GONZALEZ, C.; POPLE, J.A.; Gaussian 03, Gaussian, Inc., Wallingford, CT. 2004.
- [18] BARTELL, L.S.; GUILLORY, J.P. Electron diffraction study of the structure and internal rotation of cyclopropyl carboxaldehyde. J. Chem. Phys., V. 43, No 2, 1965, 647-653.
- [19]BOGGS, J.E. *Ciklopropil szórmazékok szerkezeti kemiája*. Közleményckm V. 42, No 1, 1974, 19-28.
- [20] BARTELL, L.S.; GUILLORY, J.P.; PARKS, A.T. Electron diffraction study of the structure and conformational behavior of cyclopropyl methyl ketone and cyclopropanecarboxylic acid chloride. J. Chem. Phys., V. 69, No 9, 1965, 3043-3048.
- [21] WURREY, C.J.; ZHENG, C.; GUIRIS, A.; DURIG, J.R. Conformational stabilities of dicyclopropyl ketone determined from variable temperature infrared spectra of xenon solutions and ab initio calculations. Phys. Cem. Chem. Phys., V. 6, 2004, 2125-2135.