$Me^{I}R^{III}(MoO_4)_2$ دراسة الاستبدال الإيزومورفي للموليبدات في WO_4^{2-} . WO_4^{2-}

الدكتور رياض طلي^{*} عبد الله الحسن^{**}

(تاريخ الإيداع 19 / 7 / 2012. قُبِل للنشر في 22 / 10 /2012)

🗆 ملخّص 🗆

تم اصطناع ودراسة سلسلة من العينات ودراستها $_{x}(WO_{4})_{x-2}(WO_{4})$ حيث (X=0.5,1.0,1.5,1.75). تم التحكم بطريقة الاصطناع ومراقبة تطور العملية بوساطة انعراج الأشعة السينية, وحساب قيم b من قيم θ (زاوية الانعراج) وحساب قرائن ميللر وأبعاد الشبكة البلورية لكل مركب ناتج وفق نسبة معينة, تبين أن حجم الخلية الأساسية يزداد بازدياد نسبة التنغستات $^{2}WO_{4}^{2}$ في المركب وهذا واضح من خلال ازدياد نصف قطر الشاردة $^{2}WO_{4}^{2}$. orthorhombic Cell

وجدنا أن تواترات الاهتزازات المختلفة تتغير وفقا لتغير نسبة المكونات التي تغير من الكتلة الجزيئية للمركب وذلك من خلال دراسة المركبات الناتجة بوساطة الأشعة تحت الأحمر IR Spectroscopy .

بينت دراسة المركبات بجهاز التحليل الحراري التفاضلي DTA أن جميع المركبات المدروسة لها السلوك الحراري نفسه تقريباً مع وجود اختلاف واضح في درجات الحرارة والموافقة لأفعال امتصاص حرارية (Endothermic (واffect) يدل الأول منها على تغير نمط التبلور والثاني يشير إلى انصهار المركب .

الكلمات المفتاحية: موليبدات, تنغستات, انعراج الأشعة السينية XRD .

مجلة جامعة تشرين للبحوث والدراسات العلمية - سلسلة العلوم الأساسية المجلد (34) العدد (3) 2012

أستاذ مساعد في كلية العلوم – قسم الكيمياء – جامعة البعث – حمص – سورية.

** طالب دراسات عليا (ماجستير) سنة ثانية – كيمياء لاعضوية – كلية العلوم – جامعة البعث – حمص – سورية.

Tishreen University Journal for Research and Scientific Studies - Basic Sciences Series Vol. (34) No. (3) 2012

Study of Isomorphic Substitution of Molybdates in Me^IR^{III}(MoO₄)₂ With Tungstates Ion WO₄²⁻.

Dr. Raid Tali^{*} Abdullah Alhassan^{**}

(Received 19 / 7 / 2012. Accepted 22 / 10 /2012)

\Box ABSTRACT \Box

A Series of Samples of NaAl $(MoO_4)_{2-x}(WO_4)_x$ were synthesized by solid state reactions according to ratio(X=0.5,1.0,1.5,1.75).X-ray diffraction technique was used for Controlling of Synthesis .The values of d were calculated by Bragg equation. Additionally, the muller indexes were indicated .It was clear that the volume of crystal cell increase, by decreasing of ratio of Molybdates. All Samples have been crystallized according to orthorhombic type of crystallization .Using the (FT-IR) spectroscopy ,it was found that , wave numbers were changed by divert the value of X .The DTA method were characterization by two endothermic effect ,the first one refer to phase transition of crystal type, but the second effect answers the melting point the phase.

Key words: Molybdates, Tungstates, X-ray diffraction.

مقدمة:

^{*}Associate Professor, Inorganic chemistry, Faculty of Science, Department of Chemistry, Albaath University, Syria.

^{**}Postgraduate Student, Faculty of Science, Department of Chemistry, Albaath University, Syria .

ترتبط الدراسات المكثفة للموليبدات والموليبدات التثائية والمركبات الأخرى الناتجة عن الاستبدال الإيزومورفي للأيونات رباعية الوجوه بأيون الموليبدات بإمكانية الاستخدامات العملية لهذه المركبات كمواد حفازة في التقنيات الجديدة. بالإضافة إلى استعمالاتها في المنظومات البلورية لخواصها الضوئية والبصرية المميزة وبخاصة الفلورة بالإضافة إلى مركبات الموليبدات الجديدة التي تتميز بخواص مغناطيسية مميزة. بالإضافة إلى الموليبدات الجديدة التي تتميز بخواص مغناطيسية مميزة. بالإضافة إلى الموليبدات الحاوية على معاصر نادرة تستعمل كمواد تألق فعالة جداً. إن إدخال مغناطيسية مميزة. بالإضافة إلى الموليبدات الحديدة التي تتميز بخواص مغناطيسية مميزة. بالإضافة إلى الموليبدات الحاوية على عناصر نادرة تستعمل كمواد تألق فعالة جداً. إن إدخال الأيونات رباعية الوجوه الكبريتات , الكرومات , التغستات وعناصر أخرى في مركبات الموليبدات الثنائية يمكن أن يؤدي إلى تحسين الخواص الطيفية للمواد ويعطي إمكانية الصطناع أصداف عديدة من المركبات ذات الخواص الفيزيائية والكيميائية المعروفة مسبقاً [3–2–1] . إن أحد أهم وعناصر أخرى في مركبات الموليبدات الإيزومورفية هو تقارب أنصاف أقطار الذرات أو الشوارد المستبدلة بعضها الشروط الأساسية اللازمة لظهور المركبات ذات الخواص الفيزيائية والكيميائية المعروفة مسبقاً [3–2–1] . إن أحد أهم بعض وفي هذا السياق فإننا نجد أن أنصاف أقطار الأيونات التي تتميز ببنية رباعية رباعية الوجوه تكون متقاربة وهذا يسمح وهي هذا السياق فإننا نجد أن أنصاف أقطار الأيونات التي تتميز ببنية رباعية رباعية الوراق أو الشوارد المستبدلة بعضها ببعض وفي هذا يسمح وفي هذا الميزين بتغير التركيب الكيميائي المعروف مقارب أو هذا يسمح وهذا يسمح وفي هذا السياق فإنيان نجد أن أنصاف أقطار الأيونات التي تتميز ببنية رباعية رباعية رباعزان والتاظر واحداً وهذا يسمح وفي هذا الموارد إلى الموارد إو التناظر واحداً مركانية المتراح الفيان بحث لما ببعض المردينين بتغير التركيب الكيميائي المتارج ليزات أو والتاظر واحداً وهذا يعني أنه يمكن أن يحدث استبدال تدريجي للشارديتين بتغير التركيب الكيميائي المعروف وهذا يعني أنه مكن أن يحدث استبدال تدريجي للشارديتين بنغير التركيب الكيميائي الميزاع النواح الواحا أو التحالي البنيوية الموليبدات المردوسة سابقام معظمها يينما لينمواد [5–4] . تبين والدرسات في هذا

الشكل رقم (1) بنية الشيليت CaWO4

AO4 2-	نصف قطر الشاردة ([°])	A ⁶⁺	$(\overset{ {o}}{A})$ نصف قطر الشاردة
MoO ₄ ²⁻	3.45	Mo ⁶⁺	0.62
WO4 ²⁻	3.52	W ⁶⁺	0.65

الجدول (1) يبين قيم أنصاف أقطار الأيونات رباعية الوجوه -2 AO4 مقارنة بقيم أنصاف أقطار الشوارد البسيطة المقابلة لها

من القيم نلاحظ :

r MoO₄²⁻ ≈ r WO₄²⁻ r MoO₄²⁻ = 0.9801 وهذا يسمح بإمكانية الاستبدال التدريجي للشاردتين مع المحافظة على البنية الفراغية للمركب وذلك بتغير النسبة الوزنية بين الشاردتين(اختلاف قيمة X) وهذا يعني الحصول على مركبات إيزومورفية جديدة تختلف بالتركيب الكيميائي للشاردتين المدروستين فقط .

أهمية البحث وأهدافه:

يهدف هذا البحث إلى اصطناع مركبات مختلطة جديدة من الشكل ×(WO₄)_{x-2}(WO₄) ودراسة خواص البنية الناتجة باستخدام تقانات مختلفة نظراً إلى ندرة الأبحاث التي تهتم بدراسة المواد الصلبة واصطناعها ودراسة خواصها ونظراً إلى أهمية الموضوع في رفد التقنيات الحديثة بمواد صلبة ذات مواصفات مميزة كالمواد ذات الفعالية الضوئية و الحفازات المستعملة في التفاعلات الكيميائية المختلفة، نجد أن هذا الموضوع هام و ضروري لانشاء أساس لدراسات بنيوية في مجال البلورات.

طرائق البحث ومواده :

استخدمت في هذا البحث المواد الأتية وهي ثلاثي أكسيد الموليبدنيوم MoO₃ (% 99.5) موليبدات الصوديوم المائية المائية Na₂MoO₄.2H₂O (%99) ثلاثي أكسيد التنغستين WO₃ (%99) تنغستات الصوديوم المائية ChemLab (99%)Na₂WO₄.2H₂O وهذه المواد جميعها من نوع ChemLab وبخاصة بالتحليل الكيميائي وهذه النقاوة ضرورية كون النسب المأخوذة من الأملاح والأكاسيد دقيقة إذ إن قلة النقاوة تؤثر في نوعية المركبات الناتجة عن الاصطناع .

كما استخدمت الأدوات والأجهزة التالية: بوتقات خزفية تتحمل درجات حرارة حتى 2000⁰ , هاون خزفي , مرمدة تسخين العينات وهي من نوع Carbolite حتى الدرجة 1200⁰ , جهاز انعراج الأشعة السينية للمساحيق DTA مرمدة تسخين العينات وهي من نوع Philips-PW-1840, جهاز التحليل الحراري التفاضلي DTA الدراسة السلوك الحراري للعينات من نوع Jasco-FT/IR-4106 , جهاز طيف تحت الأحمر من نوع A106-FT/IR , مرادة العينات على شكل أقراص بالإضافة إلى أدوات ميزان تحليلي مران بذها ميزان تحليلي العراري التفاضلي .

الجدول (2) بعض الخواص الأساسية للأكاسيد والأملاح المشاركة في الاصطناع:

المركب	الكتلة الجزيئية	درجة الانصبهار	أبعاد الشبكة البللورية	نمط التبلور
	(gr/mole)	(C°)	Cell parameters	Crystal system
			$\overset{o}{(A)}$	المجموعة الفراغية (S.G)
Na ₂ MoO ₄	205.92	687	a=10.91	خلية معينية قائمة
			b=12.87	Orthorhombic
			c=6.485	(Fddd)
Na ₂ WO ₄	293.83	692.22	a=7.72	خلية معينية قائمة
			b=10.07	Orthorhombic
			c=5.58	(Pnam)
MoO ₃	143.94	795	a=3.954	خلية معينية قائمة
			b=13.808	Orthorhombic
			c=3.69	(Pmnb)
WO ₃	231.85	1473	a=7.39	خلية معينية قائمة
			b=7.53	Orthorhombic
			c=3.84	(Pmnb)
AI_2O_3	101.96	2044	a=b=4.751	خلية سداسية
			c=12.97	Hexagonal
				$(R\overline{3}c)$

تم تحضير أربع عينات من الجملة _x(WO4)_{x-2}(WO4) <u>v</u> ميث (x=0.50,1.00,1.50,1.75) عيث ديلك محيث (x=0.50,1.00,1.50,1.75) . وذلك بغية دراسة إمكانية الاستبدال الإيزومورفي للأيونات رباعية الوجوه ودراسة التغيرات البنيوية الناتجة عن ذلك . حسبت في البداية كتلة المواد الداخلة في كل عينة وذلك حسب النسب المولية الموافقة والمبينة في الجدول (3) . بعد وزن أجزاء كل عينة من العينات تم خلط هذه الأجزاء مع بعضها ببعض وسحقها بعد إضافة كمية من الأسيتون بهدف تحسين عملية الخلط المتجانس لها ولمدة 15 دقيقة تقريباً حتى جفاف الأسيتون . أعيدت هذه العملية ثلاث مرات تحسين عملية الخلط المتجانس لها ولمدة 15 دقيقة تقريباً حتى جفاف الأسيتون . أعيدت هذه العملية ثلاث مرات متتالية لكل عينة من العينات . بعد السحق تم ضغط كل عينة على حدة بوساطة أداة ضغط ميكانيكية وذلك بهدف تقريبا الجسيمات المتفاعلة بعضها من بعض ورضافة الأسيتون . أعيدت هذه العملية ثلاث مرات تقريب الجسيمات المتفاعلة بعضها من بعض ورضاف الأسيتون . أعيدت هذه العملية ثلاث مرات متتالية لكل عينة من العينات . بعد السحق تم ضغط كل عينة على حدة بوساطة أداة ضغط ميكانيكية وذلك بهدف تقريب الجسيمات المتفاعلة بعضها من بعض وزيادة إمكانية التفاعل . وتم صنع من 5 إلى 6 أقراص مضغوطة لكل عينة . ومن ثم وضعت كل عينة على حدة في بوتقة خزفية ووضعت العينات جميعها في مرمدة وسخنت بالتدريج لمدة لايوب العرب الجسيمات المتفاعلة بعضها من بعض وزيادة إمكانية التفاعل . وتم صنع من 5 إلى 6 أقراص مضغوطة لكل عدق من قريب الجسيمات المتفاعلة بعضها من بعض وزيادة إمكانية التفاعل . وتم صنع من 5 إلى 6 أقراص مضغوطة لكل عينة . ومن ثم وضعت كل عينة على حدة في بوتقة خزفية ووضعت العينات جميعها في مرمدة وسخنت بالتدريج لمدة لايوب العرب العنوب التدكم بعملية الاصطناع ومعرفة النائج باستخدام طريقة التحليل الطوري بأشعة لاعينة بالتخدام بلي منة وليوب ورمانية العنوب (⁰ م</sup> معنه ومعرفة التائيل الطوري بأشعة الموري بألغور معنات كل عينة على درجات حرارة مختلفة (⁰ م</sup> م6500 (600 ⁰ م</sup> معنة كل حرجة حرارة لايوب معنة مل مرحلة معن م م الطوري بالتعام التعينات المذكورة في درجات حرارة مخلفة الأول من عدكل الحول التنهاء التفاعل وتشكل المركب المول وحي كل مرحلة تم يال مع على مان النها ما وينه ما معلي ما مي كل مرحلة ما مان العليمياني المول في العينة الوارد في ال

الأولية التي لم تتفاعل أو بقاء المواد الأولية جميعها كما هي دون حصول أي تفاعل وهذا واضح عندما تم التسخين إلى الدرجة 6000 حيث لم نحصل على أي تفاعل كيميائي بين أجزاء الخليط الصلب انظر الشكل (2) .

تم الاعتماد على المعادلات التالية في حساب النسب الوزنية لكل مادة من المواد الداخلة في تشكيل الجمل . NaAl(MoO₄)_{2-x}(WO₄)x :

150

كتلة الأملاح والأكاسيد	Sample					
(gr)		NaAl(MoO ₄) _{2-x} (WO ₄) _x				
	X=0.50 X=1.00 X=1.50 X=1.7					
$Na_2MoO_4.2H_2O$	_	0.2543	0.4655	0.2233		
MoO ₃	1.00	0.4538	_	-		
$Na_2WO_4.2H_2O$	0.7639	0.3466	-	0.3045		
WO3	_	0.731	1.3383	1.284		
AI_2O_3	0.2361	0.2143	0.1962	0.1882		

الجدول (3) وزن كل مادة تدخل في تركيب الجملة NaAl(MoO₄)_{2-x}(WO₄)_x وفق النسب المطلوبة.

إن معرفة الشدات الأقوى (القمم الأعلى) في مخططات الأشعة السينية للمواد الأولية كان ضروريا جدًا لإجراء المقارنة بين الخطوط الطيفية المواد الناتجة بالمواد الأولية واستكمال التحليل الطوري بأشعة X لكون هذه المقارنة تعطي فكرة واضحة عن اكتمال عملية الاصطناع أو اكتمالها جزئيا أو عدم إجراء أي تفاعل . لذلك وضعنا في الجدول (4) الخطوط الأكثر شدة في طيف XRD للأملاح والأكاسيد الأولية المستخدمة في عملية الاصطناع للجمل كافة.

المركب	$d_1(A^{o})$	I ₁ (%)	$d_2(A^o)$	I ₂ (%)	$d_3(A^{o})$	I ₃ (%)
Compound						
Na ₂ MoO ₄	5.120	100	3.080	60	3.401	45
$CuK_{\alpha1}\text{=}~1.54056A^{o}$						
MoO ₃	3.800	100	3.250	100	3.450	90
$CuK_{\alpha1}\text{=}~1.54056A^{o}$						
Na ₂ WO ₄	4.120	100	5.020	50	3.370	40
$CoK_{\alpha1}\text{=}~1.7890\text{A}^{\text{o}}$						
WO ₃	3.848	100	3.769	100	3.656	86
$CuK_{\alpha1}\text{=}~1.54056A^{o}$						
AI_2O_3	2.085	100	2. 5520	92	1.6010	81
$CuK_{\alpha1}\text{=}~1.54056A^{o}$						

الجدول (4) الخطوط الأقوى شدة في طيف ال XRD للأملاح والأكاسيد المستخدمة في عملية الاصطناع .

النتائج والمناقشة:

أولاً - دراسة المركبات الناتجة بطريقة انعراج الأشعة السينية X-Ray Powder Diffraction :

إن العديد من المركبات الكيميائية تتشكل عند التبلور على شكل مسحوق أو Powder وهذا المسحوق لا يسمح بتحديد البنية البلورية بطريقة انعراج الأشعة السينية للبلورات الأحادية (MonoCrystal) . بهذه الحالة فإن الطريقة الوحيدة والمتوافرة لدينا في مخابر الكلية هي طريقة المسحوق في تحديد المسافات بين المستويات البلورية انظر

الجداول(6,7,8,9) التي توضح مخططات انعراج الأشعة السينية وقرائن ميللر للعينات الموافقة للقيم (X=0.5,1,1.5,1.75) على الترتيب . إلا إنه عند دراسة مخطط الانعراج تحصل العديد من الصعوبات من أهمها أن هذه العملية ليست دائما سهلة , وتكمن الصعوبة عند إيجاد قرائن ميللر بعدم معرفتنا عن أبعاد الخلية الأساسية للشبكة البلورية كالأضلاع والزوايا. إذ إنه بمعرفة أبعاد الشبكة البلورية من السهل جداً إيجاد قرائن ميللر للمستويات البلورية بمساعدة المسافة بين المستويات البلورية d . وبما أن الهدف الأساسي عند دراسة مركب جديد ناتجاً لدينا هو معرفة أبعاد الشبكة البلورية ونمط التبلور. إذا العملية بهذه الحالة ستكون صعبة للغاية ومملة جداً و بخاصة عندما تكون البلورة تتتمى إلى أنماط تبلور دنيا كالخلية الأحادية الميل أو ثلاثية الميل . في هذه الحالة فان انعكاسات الأشعة السينية عن الشبكة البلورية قد تتداخل بعضها ببعض بشكل أكبر وبخاصة عندما تكون أبعاد الشبكة البلورية كبيرة والتناظر أدنى. بالإضافة إلى ذلك إن عدم اكتمال اصطناع المركب سيؤدي إلى وجود خطوط طيفية متقطعة وغير حادة أو غير واضحة المعالم . وكقاعدة عامة إن البلورات ذات أنماط التبلور الدنيا التي أبعادها تتجاوز Å 10 التي لا يمكن الحصول على بلورات كبيرة لها تبقى دراستها غير كاملة من ناحية التحليل البنيوي بأشعة X . من هنا لابد من الإشارة إلى أهمية الحصول على بلورات أحادية (MonoCrystal) لهذه المركبات من أجل التحليل البنيوي الكامل، وهذا الشيء يغيب عن مخابرنا الحالية . إذ إن اصطناع البلورات يتطلب تقنيات وأفراناً خاصبة لذلك فإن طريقة الدراسة بالمسحوق تستعمل بشكل محدود فى تحديد أبعاد الخلية الأساسية للشبكة البلورية وبخاصة عالية التناظر ومتوسطة النتاظر. وذلك اعتماداً على العلاقة التي تربط المسافة بين المستويات البلورية d وأبعاد الشبكات البلورية وقرائن ميللر المتاصر. ودين أعمد على عدر على $\frac{1}{d_{hkl}^2} = \frac{h^2 + k^2 + l^2}{a^2}$: لكل نمط من أنماط التبلور [7] فمن أجل الخلية المكعبة العلاقة تكون بالشكل $\frac{1}{a^2}$ ومن أجل

$$\frac{1}{d_{hkl}^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2} \quad : \quad \text{insumary instantian of the second states} \quad \frac{1}{d^2} = \frac{h^2 + k^2}{a^2} + \frac{l^2}{c^2} \quad : \quad \text{insumary instantian of the second states} \quad \frac{1}{d_{hkl}^2} = \frac{4}{3} \left(\frac{h^2 + k^2 + hk}{a^2} \right) + \frac{l^2}{c^2} \quad : \quad \text{insumary instantian of the second states} \quad \frac{1}{d_{hkl}^2} = \frac{1}{3} \left(\frac{h^2}{a^2} + \frac{k^2 Sin^2 \beta}{b^2} + \frac{l^2}{c^2} - \frac{2hlCos\beta}{ac} \right)$$

ومن الواضح أن الحالات التي تكون فيها المحاور الإحداثية متعامدة $(-2)^{\alpha} = \gamma = 2$ مثل المكعبة والرباعية والمعينية فإن تغير إشارة قرائن ميللر لا يؤثر في قيمة المسافة بين المستويات البلورية b لأن $\frac{1}{d^2}$ تتناسب مع مربعات القرائن . أما في حالات التبلور الأخرى التي تكون فيها المحاور الإحداثية غير متعامدة فإن إشارة القرائن يجب أخذها بعين الحسبان. إن تحديد قرائن ميللر تكون صعبة للغاية عند عدم معرفة أبعاد الشبكة لبلورية . لأن هذه الطريقة لا تعطي دائماً نتيجة دقيقة ومحددة . ونلجأ إلى هذه الطريقة في حال عدم توفر بلورة أحادية للغاية . لأن هذه الطريقة لا تعطي دائماً نتيجة دقيقة ومحددة . ونلجأ إلى هذه الطريقة في حال عدم توفر بلورة أحادية لأن تحديد أبعاد الشبكة لبلورية . لأن هذه الطريقة لا تعطي دائماً نتيجة دقيقة ومحددة . ونلجأ إلى هذه الطريقة في حال عدم توفر بلورة أحادية لأن تحديد أبعاد الخلية الأساسية بوجود البلورة الأحادية يعطي نتائج دقيقة ومحددة . ومن أهم العوامل التي نحكم بموجبها على صحة الخلية الأساسية بوجود البلورة الأحادية يعطي نتائج دقيقة ومحددة . ومن أهم العوامل التي نحكم بموجبها على صحة الحسابات في أثناء دراسة مخطط انعراج الأشعة السينية هو أن تكون النسبة بين عدد الخطوط النظرية والمكنة على محة الحسابات في أثناء دراسة مخطط انعراج الأشعة السينية هو أن تكون النسبة بين عدد الخطوط النظرية والمكنة على الحسابات في أثناء دراسة مخلط الخرية قريبة من الواحد بالإضافة إلى ضرورة وجود تطابق تقريبي بين الكثافة الحسابات في أثناء دراسة مخطط انعراج الأشعة السينية هو أن تكون النسبة بين عدد الخطوط النظرية والمكنة على محمد الحسابات في أثناء دراسة مخطط انعراج الأشعة السينية من الواحد بالإضافة إلى ضرورة وجود تطابق تقريبي بين الكثافة الحسابات في أثناء دراسة محلوط التحريبية قريبة من الواحد بالإضافة إلى ضرورة وجود تطابق تقريبي من الكثافة التحريرية والمكثافة التحريبي بين الكثافة التحريبية المحسوبة نظرياً من العلاقة التي تربط الكثافة النظرية عمر مع عد الوحدات البنيوية Z

الداخلة في الخلية الأساسية والوزن الجزيئي وحجم الخلية بالعلاقة : Z = Z حيث V حجم الخلية الأساسية و M الوزن الجزيئي للمادة المدروسة .

لقد تم أخذ مخططات الانعراج بأشعة X بوساطة جهاز انعراج الأشعة السينية –X RayPowderDiffractometer من طراز Philips-PW-1840 في قسم الفيزياء كلية العلوم بجامعة البعث . الكاتود المستعمل من النحاس بطول موجة مقدارها ${

m A}$ الكاتود المستعمل من مرتبة المسافة بين المستويات البلورية تراوحت زوايا الانعراج من ($80^\circ {\rightarrow} 80^\circ)$. في هذه الجملة تمت دراسة عدد من النسب المولية وهي كالتالى(MoO₄²⁻:WO₄²⁻=1.5:0.5, 1:1,0.5:1.5,0.25:1.75) في مجرى تحديد أبعاد الشبكة البلورية وحساب قرائن ميللر بطريقة التجارب والأخطاء و فرض بنى مختلفة ابتداءً من التناظر العالى بالتسلسل حتى توصلنا إلى نمط التبلور الصحيح حيث حصلنا على توافق بين قيم قرائن ميللر وأبعاد الشبكة البلورية وتطابقت أبعاد الشبكة البلورية الناتجة مع معظم الخطوط الطيفية . إن نتيجة الحساب بينت أن قرائن ميللر تطابق التبلور المعيني للمركبات المذكورة لكن هناك اختلافات بسيطة في بعض أبعاد الشبكة البلورية وهذا الاختلاف واضح أنه متدرج بتدرج تزايد نسبة التنغستات في البنية حيث نوهنا سابقاً بأن هناك اختلافاً طفيفاً في أنصاف الأقطار الشاردية بين الأيونين رباعيي الوجوه $r_{MoO_{1}^{-}}=3.52A^{o},r_{MoO_{1}^{-}}=3.45A^{o}$ وهذا الاختلاف قد أدى إلى زيادة بسيطة في حجم الخلية الأساسية الناتج عن تزايد في بعض أبعاد الشبكات البلورية بالإضافة إلى ذلك فإن زيادة نسبة التنغستات في المركب لا يزيد فقط في أبعاد وحجم الخلية الأساسية بل يزيد من كثافة المركب العملية والنظرية . إن ثبات نمط التبلور عند استبدال المولبيدات بالتنغستات مع تغير بسيط في أبعاد الخلية الأساسية يدل على الاستبدال الإيزومورفي لهذين الايونين ببعضهما مع الحفاظ على البنية ومن الواضح أنه عندما تكون نسبة التنغستات أكبر من الموليبدات فان أبعاد الخلية الأساسية سوف تكون أقرب إلى مركب تتغستات الألمنيوم والصوديوم NaAl(WO₄)2 [9] أما عندما تصبح نسبة الموليبدات أكبر من التنغستات فان أبعاد الخلية الأساسية سوف تكون أقرب إلى مركب موليبدات الألمنيوم والصوديوم NaAl(MoO₄)2 [8]علما أن المركبين يملكان نمط تبلور خلية عنصرية أحادية الميل أبعاد الخلية الأساسية للمركب $NaAl(WO_4)_2$

هي: هي: a=9.6315 (Å), b=5.3735 (Å), c=12.9785 (Å),β=90.2° هي: a=9.621 (Å),b=5.3390 (Å), c=13,146 (Å),β=90.01° (Å),b=5.3390 (Å),c=13,146 (Å),β=90.01°, (Å),β=90.01°, (Å),b=5.3390 (Å),c=13,146 (Å),β=90.01°, (Å),b=5.3390 (Å),b=5

			x *+-3-+)=;; (e) 0 ,;
المركب المدروس Compound	$a(\overset{\scriptscriptstyle o}{A})$	$b(\overset{o}{A})$	°(A)	$(\stackrel{o}{A})^3$ الحجم
$NaAl(MoO_4)_{1.5}(WO_4)_{0.5}$	7.930	4.935	17.552	686.89
NaAl(MoO ₄)(WO ₄)	8.424	16.116	11.460	1555.82
$NaAl(MoO_4)_{0.5}(WO_4)_{1.5}$	8.438	16.104	11.862	1611.87
NaAl(MoO ₄) _{0.25} (WO ₄) _{1.75}	8.484	16.020	12.445	1691.45

الجدول (5) أبعاد المركبات وحجمها NaAl(MoO₄)_{2-x}(WO₄)_x من أجل القيم(X=0.5,1.00,1.5,1.75).

يبين الشكل (3) طيف انعراج الأشعة السينية للمركبات المدروسة «(WO₄)»-2(WO₄)»-2 (XOO₄) من أجل القيم (X=0.5,1.0,1.5,1.75) ان النظر الى أطياف انعراج الأشعة السينية ابتداء من X=0.5 إلى X=0.5 حيث نلاحظ انزياح الخط(200) نحو درجات الانعراج الأقل أي تتخفض قيمة 20 وبالتالي فإنّ ترافقه زيادة بقيم b وفق قانون براغ في الانعراج πλ=2dsin0 . وبالتالي فإنّ الزيادة في الخط(200) ترافقه زيادة طفيفة بقيم a الموافقة للقرائن (200) وفي الوقت ذاته يمكن ملاحظة ذلك الانزياح في خطوط انعراج الخرى مثل (210) , (221) وهكذا. هذه الانزياحات تؤكد التغيرات الطفيفة في أبعاد الشبكة البلورية وبالتالي في حجم الخلية الأساسية وهذا واضح في الشكل(4) الذي يمثل التغير في حجم الخلية الأساسية بتغير نسبة التنغستات في المركب .

الشكل (3) طيف انعراج الأشعة السينية للمركبات NaAl(MoO₄)_{2-x}(WO₄)_x من أجل القيم (X=0.5,1.00,1.5,1.75).

الشكل (4) تغير حجم الخلية الأساسية للمركبات NaAl(MoO₄)_{2-x}(WO₄)_x من أجل القيم (X=1.00,1.5,1.75) .

إن بنية المركب $[MoO_4]_{1.5}(WO_4)_{0.5}$ قريبة بأبعادها البلورية من المركب [MoO_4]_{1.5}(WO_4)_{0.5} قريبة بأبعادها البلورية من المركب [MoO_4]_{1.5}(WO_4)_{0.5}] [10] KDy[[(MoO_4)_{1.5}(WO_4)_{0.5}] [10] هو $^{(a)}_{(A)}$ ($^{(a)}_{(A)}$) b=7.97 (

$NaAl[(MoO_4)_{1.5}(WO_4)_{0.5}]$						
T/T	d, $(\overset{o}{A})$	10	⁴⁺ /d² قيم	111		
I/I _o	المسافة	Found	Calculated	nki		
الشدة		الموجودة	المحسوبة			
80	3.965	636	636	200		
98	3.794	695	703	013		
98	3.509	812	812	005		
100	2.909	1182	1177	212		
92	2.533	1559	1561	302		
90	2.466	1644	1644	020		
84	2.366	1786	1774	022		
84	2.250	1975	1972	312		
84	2.112	2242	2238	108		
84	2.096	2276	2280	220		
86	1.951	2627	2631	009		
89	1.715	3400	3395	127		
90	1.646	3691	3699	030		
89	1.410	5030	5034	418		
85	1.284	6066	6053	508		
92	1.264	6259	6267	428		

الجدول (6) يبين مخطَّط انعراج الأشعَّة السَّينيَّة وقرائن ميللر للمركَّب [5.6(WO4).5(WO4) .

NaAl[(MoO ₄)(WO ₄)]						
		10 ⁴	$^{+}/d^{2}$ قيم			
l/l _o	d,	Found	Calculated	hkl		
الشِّدَّة	$\overset{o}{(A)}$	الموجودة	المحسوبة			
	المسافة					
32	4.212	564	564	200		
29	4.065	605	602	210		
30	4.029	616	616	040		
100	3.804	691	692	041		
20	3.735	717	718	220		
15	3.551	793	794	221		
14.5	3.299	919	921	042		
36.6	3.129	1021	1023	222		
15.6	3.071	1060	1062	142		
17	3.012	1102	1104	150		
13.5	2.804	1272	1269	300		
15	2.242	1990	1993	313		
29.4	2.109	2248	2250	035		
33.3	2.086	2298	2301	333		
22.5	1.991	2523	2526	314		
32.5	1.910	2741	2741	006		
34.3	1.880	2829	2834	334		
32.4	1.742	3295	3305	206		
34	1.350	5487	5489	048		
33	1.292	5985	5997	642		

الجدول (7) يبين مخطِّط انعراج الأشعَّة السَّينيَّة وقرائن ميللر للمرحَّب[(WO4)(MO0)]NaAl

	NaAl[(MoO ₄) _{0.5} (WO ₄) _{1.5}]								
		104+	/d 2 قيم				104	قيم d ² /d ² /	
I/I _o	d, (^o _A)	Found	Calculated	hkl	I/I _o	d, (^o _A)	Found	Calculated	hkl
الشِّدَّة	المسافة	الموجودة	المحسوبة		الشِّدَّة	المسافة	الموجودة	المحسوبة	
36	4.359	526.291	_	_	42	2.535	1556.12	1548.33	302
37	4.219	561.78	561.78	200	35	2.489	1614.17	1608.91	053
			560.46	131				1612.99	330
38	4.088	598.38	600.57	210	39	2.306	1880.53	1884.38	340
37	4.026	616.95	620.34	040	35	2.162	2139.38	2125.68	035
100	3.812	688.17	691.41	041	39	2.096	2276.24	2285.97	410
43	3.63	758.90	760.79	140	38	2.024	2441.06	2439.93	314
36	3.588	776.77	780.08	103	38	1.977	2558.51	2558.51	006
			773.67	132				2570.24	412
42	3.478	826.69	831.86	141	40	1.906	2752.67	2750.10	334
57	3.361	885.24	884.85	212	39	1.870	2859.67	2854.04	126
41	3.212	969.28	969.28	050	37	1.860	2890.51	2886.47	155
								2906.08	182
								2886.82	403
45	3.161	1000.81	1001.16	222	32	1.851	2918.68	2925.59	413
49	3.076	1056.88	1045.07	142	40	1.805	3038.96	3047.90	136
								3043.15	280
43	3.007	1105.94	1109.72	150	34	1.779	3159.72	3159.08	216
								3151.47	442
47	2.951	1148.03	1137.11	004	36	1.750	3265.31	3275.39	226
43	2.888	1198.96	1201.43	203	39	1.663	3615.89	3618.47	084
48	2.741	1331.01	1335.11	301	37	1.287	6037.30	6025.47	650
45	2.642	1432.63	1432.65	124					

الجدول (8) مخطَّط انعراج الأشعَّة السِّينيَّة وقرائن ميللر للمركَّب [5.4(WO4)_{0.5}(WO4) .

NaAl[(MoO ₄) _{0.25} (WO ₄) _{1.75}]					
		104+/	/d ² قيم		
I/I _o	d, _(A)	Found	Calculated	hkl	
الشِّدَّة	المسافة	الموجودة	المحسوبة		
37	4.242	555.7234	555.7234	200	
			553.05871	122	
30	4.109	592.2809	594.6884	210	
33	4.005	623.4404	623.4404	040	
100	3.812	688.1676	688.00734	041	
42	3.740	714.9189	711.5835	220	
49	3.588	776.7748	776.15044	221	
42	3.361	885.2440	881.70816	042	
43	3.222	963.2719	969.85	222	
63	3.148	1009.0915	1020.0166	142	
41	3.076	1056.8840	1072.036	014	
43	3.007	1105.9440	1113.0564	150	
46	2.847	1233.7440	1243.730	241	
54	2.731	1340.7771	1343.4737	143	
58	2.651	1422.9202	1437.4315	242	
39	2.489	1614.1735	1614.1735	005	
41	2.451	1664.6134	1661.0087	062	
37	2.353	1806.1597	1799.9395	162	
			1795.4423	144	
37	2.306	1880.5349	1873.8180	340	
			1870.4451	313	
45	2.256	1964.8156	1964.8587	035	
42	2.225	2019.9470	2023.0312	261	
38	2.139	2185.6390	2182.1653	333	
45	2.001	2497.5019	2493.7616	080	
48	1.902	2764.2605	2752.0294	082	
57	1.813	3042.3165	3035.9933	226	
46	1.722	3372.3583	3359.6648	191	
49	1.676	3560.0162	3553.3656	192	
53	1.450	4756.2426	4755.7246	048	
13	1 251	5/78 8/86	5/80 3060	551	
4.5	1 21/	5701 7/29	5785 6455	200	
44	1.314	5070 1602	5062 (500	209	
40	1.294	5972.1602	3903.0399	5/5	
44	1.229	6620.5830	6615.6841	605	
40	1.210	6830.13	6830.9850	339	

الجدول (9) مخطَّط انعراج الأشعَّة السَّينيَّة وقرائن ميللر للمركِّب [₇₅,WO4)_{0.25} MO0].

ثانياً - دراسة المركبات NaAI(MOO₄)_{2-X}(WO₄)_X باستخدام طيف الأشعة تحت الحمراء :

بما أن الاستبدال الإيزومورفي يحصل في الأيونات المعقدة ذات التناظر رباعي الوجوه فإنه من الضروري أن نترقب سلوك أطياف تحت الأحمر IR لهذه الأطوار الناتجة وقد سحبت أطياف تحت الأحمر على جهاز من نوع Jasco-FT/IR-4106 باستعمال بروميد البوتاسيوم يوضح الشكل (5) النمط العام لهذه الأطياف للمركبات المختلفة والجدول (10) يعطى القمم الأعظمية لامتصاص هذه الشوارد [11] .بمقارنة أطياف IR للمركبات الحدية NaAl(MOO₄)2 وNaAl(WO₄)2 بالمركبات الوسطية ذات النسب المختلفة ضمن المجال المدروس نلاحظ اختلافاً ليس بالملحوظ في الأطياف ونلاحظ أيضاً إمكانية لتغير قيم التواترات بتغير محتوى الأيون -2-WO رباعي الوجوه إن أطياف IR لأى أيون تتعلق بالجزيء الموجود فيه هذا الأيون , وتتعلق بالتأثير المتبادل بين الجزيئات وبين الجزيء نفسه . إن تناظر الأيون رباعي الوجوه -2AO4 (A=Mo,W) مرتبط بطبيعة التأثيرات المتبادلة مع المحيط ويمكن لهذه التأثيرات المتبادلة أن تصنف إلى ثلاثة تأثيرات أ- إمكانية تشكل روابط هيدروجينية من الشكل (A-O.....H) ب- تأثير الحقل البلوري ج- تشكل روابط تناسقية مابين الأيون -AO₄2 وذرات المعدن المجاور . وفي هذا الإطار لقد اعتمدنا على بعض المعطيات المرجعية[3-2] التي تدرس مركبات مشابهة لموضوع البحث في سبيل تسهيل تفسير أطياف تحت الأحمر . يمكن التمييز بين الأنواع المختلفة للروابط الموجودة في سلسلة المركبات المدروسة حيث نجد أن القمم التي تتميز بالأعداد الموجية التالية (Cm⁻¹(909;911;908;956)^{1–}تشير إلى اهتزاز امتطاط متناظر للروابط الخطية (A-O)(A=Mo,W)(A-O)أما القيم (837;831;828;829)أما القيم (837;831;828;829 لفتشير إلى اهتزاز امتطاط غير متناظر للرابطة (A=O)(A=O) والقيم (655;616;641;639) والقيم (Cm⁻¹(655;616;641;639) تشير إلى اهتزاز الروابط A−O−A) في ثمانيات الوجوه⁻⁶[AO6] حيث (A=Mo,W) والتي تحتل فيها A مركزه وتتوضع ذرات الأكسجين في زواياه والقيم (Cm⁻¹(576;505;513;520 تشير إلى اهتزاز زمرة الهيدروكسيل التي يحصل بينها وبين الاهتزازت الداخلية للرابطة (A−O) تراكب(Overlapp) في المجال(700;700) (Cm⁻¹ القيم(Cm⁻¹(456;431;433;437 تشير إلى اهتزاز حنى للمجموعات ثمانية الوجوه ⁻⁶[WO₆]ξ الترددات العالية Cm⁻¹(1013;1018;1018) للمركبات الموافقة لقيم (X=1.0,1.5,1.75) على التوالي تشير إلى اهتزاز حني للرابطة (O-W-O)(OW-O) وهو ارتباط ثنائي السن تكون فيه ذرتا الأوكسجين عائدتين لمجموعتين مختلفتين من رباعيات الوجوه⁻²[AO4] وهذا يشير إلى وجود مجموعات بنائية من النموذج ثماني الوجوه⁻⁶[WO6]أما القيم (1098;1100;1104;1109 تشير إلى اهتزاز الرابطة للمجموعات ⁻⁹[AIO] مقارنة بالقيمة المرجعية (1097Cm⁻¹), الأعداد الموجية ($Cm^{-1}(1171-1182)$ يمكن أن تكون نتيجة لتأثير ثمانيات الوجوه $[AO_6]^{6-}$ مع ثمانيات الوجوه للمجموعات⁻⁹[AlO₆] أما اهتزاز الماء المتبلور فيكون موجوداً في المجال من(1615إلى1655)⁻Cm أوهو يشير إلى اهتزاز حنى حيث نجد الأعداد الموجية التالية : (m⁻¹(1633;1643;1645;1643) Cm⁻¹في المركبات الأربعة . إن التفاوت في قيم اهتزاز الروابط من النوع الواحد يعود إلى تفاوت النسب المولية للأيون المستبدل وهذا ما يزيد أو ينقص الكتلة الجزيئية الذي يؤثر بدوره في ثابت الدوران وبالتالي العدد الموجى .

AO4 ²⁻	$\nu_1 \\ A_1(R)$		v_3 F ₂ (IR,R)	v_4 F ₂ (IR,R)
MoO_4^{2-}	897	317	837	317
WO ₄ ²⁻	931	325	838	325

الجدول (10)التربدات الأساسية للشوارد الحرة رباعية الوجوه مقدرة ب Cm⁻¹ .

(IR:Infrared,R:Raman)

الشكل (5) طيف تحت الأحمر للمركبات NaAl(MoO₄)_{2-X}(WO₄)_x باستخدام KBr.

ثالثاً- دراسة السلوك الحراري للمركبات NaAl(MoO₄)_{2-x}(WO₄)_x باستخدام جهاز التحليل الحراري التفاضلي DTA :

Differential) تمت دراسة العينات (WO₄)_{2-x}(WO₄) باستخدام جهاز التحليل الحراري التفاضلي (thermal analysis is bhimadzu وهو من نوع Shimadzu لقد تمت برمجة الجهاز للعمل وفق الشروط التالية في مجال من درجات الحرارة (0 900°C) وهو من نوع Shimadzu معدل تنفق عو من غاز النتروجين N₂ ويمعدل تدفق مقداره المعدارة (0 900°C) سرعة التسخين بمعدل Min يا 30°C/Min في جو من غاز النتروجين N₂ ويمعدل تدفق مقداره الله وباستخدام مسحوق الألومينا 0 30°C/Min كمادة مرجعية عند إجراء القياس وكمية مقدارها mo مقداره عدن العرارة (0 900°C) وباستخدام مسحوق الألومينا 0 30°C/Min كمادة مرجعية عند إجراء القياس وكمية مقدارها mo مقداره عينة من العينات الصلبة المدروسة . إن دراسة السلوك الحراري للعينات باستخدام جهاز DTA يعرض التأثيرات الحرارية الماصة للحرارة (العمامية المدروسة الحرارة (العينات باستخدام جهاز معال يعرض التأثيرات الحرارية الماصة للحرارة (الماصة الحرارة (العينات باستخدام جهاز المادة من خلال تدفق حرارة التسخين بين العينة والمادة المرجعية تعبر هذه التدفقات الحرارية عن التغيرات الفيزيائية والكيميائية لهذه العينة حيث إن المادة بين العينة والمادة المرجعية تعبر هذه التدفقات الحرارية عن التغيرات الفيزيائية والكيميائية لهذه العينة المدروسة . إن المادة المرجعية تعد مادة خاملة (exothermal) في الشروط نفسها التي تخضع لها العينة المدروسة. إن المادة المرجعية تعد مادة خاملة (endothermal) في الشروط نفسها التي تخضع لها العينة المدروسة. إن المادة المرجعية تعد مادة خاملة (inert reference material) في الشروط نفسها التي تخضع لها العينة المدروسة . إن دراسة السلوك الحراري لهذه المركبات يبين أن جميعها تخضع لتفاعلات ماصة للحرارة (المالين المركب 2) معرفي المركب 2) في سلسلة المركبات المروسة يضع لماعين ماصين دراسة الدراسة أل الحرارية الفروسة المروسة المادة المركبات المردوسة الحرارة (الحرارة المرجعية تعد مادة خاملة (العام مالين أل جميعها تخضع لتفاعلات ماصة الحراري العينة المركب 2) مردوسة يضع المركب 2) وهو يشير إلى انتقال بلوري المركب 2) المرك 2) مراكم الحرارة (الحرارة الأول عند درجة الحرارة ((ح

 $(T=690.85^{\circ}C)$ إلى نمط تبلور (P3m1) TrigonalCell (P3m1) والثاني عند درجة الحرارة (C2/c) MonoclinicCell وهو يشير إلى انصهار المادة [8] تم إدراج القيم الماصة للحرارة في سلسلة المركبات_x(WO₄)_{2-x}(WO₄) في الجدول رقم(11).

إن الفعل الماص للحرارة عند الدرجة 532.91° للعينة b يدل على تغير في نمط التبلور واعادة ترتيب للبنية البلورية. إن الفعل الماص للحرارة عند درجة الحرارة 701.02° للعينة b الموافقة للقيمة E=0.5 يدل على تفكك المركب إلى الأكاسيد الموافقة وأيضا بالنسبة إلى النسب الأخرى الموافقة ل(T1.5,1.75) نلاحظ أن الفعل الماص للحرارة المطابق لـ(F1.1.5,1.75) و 6661.36° 661.366° 662.050° , يدل على تفكك العينات إلى الأكاسيد الموافقة أما درجة الحرارة الحرارة المطابق لـ(F1.5,1.75) و 6661.36° 661.366° 662.050° , يدل على تفكك العينات إلى الأكاسيد الموافقة أما درجة الحرارة المطابق لـ(F1.5,1.75) و 6661.360° 661.366° , يدل على تفكك العينات إلى الأكاسيد الموافقة أما درجة الحرارة المطابق لـ(F1.5,1.75) و 6661.360° 661.360° , يدل على تفكك العينات إلى الأكاسيد الموافقة أما درجة الحرارة الأعلى من ذلك 676.0120 و 778.380° تدل على انصهار العينات . إن الانزياحات الواضحة في قيم الحرارة المعول الماص للحرارة بين المركبات المختلفة يعود إلى الاختلاف الواضح في النسب المولية أو قيم X للمركبات . ويث نلاحظ أن الفعل المركبات المختلفة يعود إلى الاختلاف الواضح في النسب المولية أو قيم X للمركبات . حيث نلاحظ أنه كلما ازدادت كتلة التنعستات على حساب نقصان كمية الموليبدات فإنّ ذلك يرافقه تزايد في الفعل الماص للحرارة الموافقة لتفكك المركبات المختلفة يعود إلى الاختلاف الواضح في النسب المولية أو قيم X للمركبات . حيث نلاحظ أنه كلما ازدادت كتلة التنعستات على حساب نقصان كمية الموليبدات فإنّ ذلك يرافقه تزايد في الفعل الماص للحرارة الموافقة لتفكك المركبات إلى أكاسيد , وهذا سببه أيضا الاختلاف في الطاقة الشبكية والسعة الحرارية الكرل منها.

NaAl(MoO₄)_{2-X}(WO₄)_x الشكل (6) يبين السلوك الحراري للمركبات باستخدام جهاز التحليل الحراري التفاضلي DTA .

<u> </u>	30.1 .	
المركب المدروس	DTA Peak/C ^o	
NaAl(MoO ₄) _{2-x} (WO ₄) _x		
	endo	exo
NaAl(MoO ₄) ₂	506.85	-
	590.85	_
NaAl(MoO ₄) _{1.5} (WO ₄) _{0.5}	532.91	-
	701.02	-
NaAl(MoO ₄)(WO ₄)	523.92	-
	626.05	-
	738.33	_
NaAl(MoO ₄) _{0.5} (WO ₄) _{1.5}	521.36	-
	661.36	-
	778.38	-
NaAl(MoO ₄) _{0.25} (WO ₄) _{1.75}	676.01	-
	801.92	_

NaAl(MoO₄)_{2-X}(WO₄)_x المركبات المركبات (11) يبين القيم الماصة للحرارة المركبات . باستخدام جهاز التحليل الحراري DTA.

الاستنتاجات والتوصيات:

بناءً على ما تمت دراسته وتحليله يمكن أن نخلص إلى النتائج التالية :

1- اصطناع مركبات مختلطة من الموليبدات والتنغستات في درجات حرارة تراوحت من 6000⁶ إلى 750^c ولمدة 29 ساعة حتى استكمال عملية الاصطناع الصلب لهذه المركبات وتم التأكد من ذلك بطريقة التحليل الطوري بأشعة X .

2- دراسة مخططات انعراج الأشعة السينية لهذه المركبات بينت أن جميع هذه المركبات تملك نمط تبلور معيني مع وجود إزاحات طفيفة في قيم d ناتجة عن تغير قيم X (تغير أنصاف الأقطار الأيونية للعنصرين البديل والمستبدل).

3− تم حساب قرائن ميللر hkl واستنتاج أبعاد الخلية الأساسية للشبكة البلورية وحجمها للمركبات الناتجة كافة.

NaAI(MoO₄)₂ دراسة المركبات الناتجة باستخدام طيف تحت الأحمر يظهر تشابها مع المركبات الحدية NaAI(MoO₄)₂ و NaAI(WO₄)₂ مع وجود اختلافات صغيرة في قيم تواترات الاهتزازات العائدة إلى المجموعات المختلفة ناتجة عن تغير قيم X في هذه المركبات .

5− دراسة السلوك الحراري باستخدام جهاز التحليل الحراري التفاضلي DTA لهذه المركبات بيَّن أن جميع المركبات المدروسة لها السلوك الحراري نفسه (أفعال امتصاص حرارية) مع وجود انزياحات واضحة في درجات الحرارة.

المراجع :

- [1]. CHUANG, H.C; CHI, S.L; TENG, M.C. Structural, Spectroscopic and Photoluminescence Studies of LiEu(WO₄)_{2-x}(MoO₄)_x Near-UVConvertible Phosphor. Journal of Solid State Chemistry U.S.A,Vol.180,2007,P.619-627.
- [2]. ANDRE L.M;JAILSON M.F;MARCIA R.S.Yellow Zn_xNi_{1-x}WO₄ Pigments Obtained Using a Polymeric Precursor Method. Dyes and Pigments.Vol.77,2008,P.210-216.
- [3]. XIAO X.W;Jian X. Shi;Qiang S;Meng L.G. *The Potential Red Emitting* $Gd_{2-y}Eu_y(WO_4)_{3-x}(MoO_4)_x$ *Phosphors For UV InGaN-Based Light Emitting Diode*. Materials. Science and Engineering U.S.A,Vol.B,No.140,2007,P.69-72.
- [4]. Koster A.S ;Rieck G.D.*The Structures of Potassium*, *Rubidium*, *and Cesium Molybdates and Tungstate*. By Acta Cryst U.S.A,Vol.B26,1974,p.1148
- [5]. FERNANDEZ F.M;COLON C. M.Synthesis and Characterization of LnAg(WO₄)(MoO₄) Journal of Alloys and Compounds U.S.A, Vol.451,2008,P.317-319.
- [6].MUKTHA.B;GIRIDHAR.M;GURU T.N.novel Scheelite –like Structure of BaBi₂Mo₄O₁₆: Photocatalysis and Investigation of the Solid Solution,BaBi₂Mo₄. _xW_xO₁₆ (0.25≤x≤1). Journal of Photochemistry and Photobiology U.S.A,Vol.187, 2007,P.177-185.
- [7]. Kovba L.M.Rontgen Phase Analysis. Moscow State University, 1982.
- [8]. PENA.A;Sole.R;JNA.G;MASSONS.J;Diaz.F;AGUILO.M.Primary Crystallization Region of NaAl(MoO₄)₂:Cr³⁺ Doping Crystal Growth and Characterization.ChemMater U.S.A,Vol.18,2006,P.442-448.
- [9]. NIKOLON.I;NIKOLOV.V;PESHEV.P.Crystal Growth of Pure and Cr³⁺- Doped NaAl(W0₄)₂. Journal of Crystal Growth U.S.A,Vol.254,2003,P.107-114.
- [10]. KHAIKINA E.Potassium Dysprosium Molybdenium Tungsten Oxide. Russian Journal Inorganic Chemistry R.U.S, Vol.24, 1979, P.1485
- [11]. KAZUO N.Infrared and Raman Spectra of Inorganic and Coordination Compound. Fourth Edition, John Willey & Sons, London, 1986, 1138.