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   الملخّص 

  
Li, 6Li, 7 Li,8Be, 9, B10حسـبت عـزوم رباعیـات الأقطـاب الكهربائیـة للنـوى المشـوهة المتنـاظرة محوریـاً 

B, 11C,12 وN14  كتوابـع للسـبین الكلـيI   ومعامـل التشـوهβ إضـافة إلـى ذلـك، اسـتخدمت التوابـع الموجیـة للجسـیم .
ــاً فــي حســاب العناصــر المصــفوفیة  المفــرد (نكلیون)طبقــاً  للنمــوذج الطبقــي فــي النــوى المشــوهة وغیــر المتنــاظرة محوری

 ,B,11 لمـؤثر عـزوم رباعیـات الأقطـاب الكهربائیـة وكـذلك تـم حسـاب عـزوم رباعیــات الأقطـاب للنـوى المشـوهة التالیـة

Li6Li, 7Li, 8Be, 9, B10 C 12 وN14  الطبقـة  المشـوهة والغیـر متنـاظرة محوریـاً فـيp   كتوابـع لوسـیط التشـوهβ  
0ووسیط الهزاز التوافقي   γووسیط اللامحوریة 

0wh والذي عبرنا عنه بدلالة  العد د الكتلي ،A .  
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  ABSTRACT    

 

 The quadrupole moments of the deformed nuclei in the p-shell: 6Li, 7Li, 8Li, 9Be, 
10B, 11B, 12C, and 14N are calculated as functions of the total spin I and the deformation 
parameter b  by assuming that these nuclei have axes of symmetry. Moreover, the 
single-particle wave functions of a nucleon in a deformed non-axially symmetric nuclei 
are used to calculate the matrix elements of the quadrupole moment operator. 
Accordingly, the quadrupole moments of the deformed nuclei in the p-shell 6Li, 7Li, 8Li, 
9Be, 10B, 11B, 12C, and 14N are calculated as functions of the deformation parameter β, 
the non-axiality parameter γ, and the oscillator parameter 0

0wh , which is obtained as 
function of the mass number A. 
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1. INTRODUCTION 
 

The nuclear collective motion [1] is a topic of the nuclear structure theory which 
has grown steadily both in the sophistication of its theory and in the range of data to 
which it relates. The most central parameters of collective rotation are the moments of 
inertia [2,3,4] and the quadrupole moments [5] of deformed nuclei. Consequently, the 
investigations of the nuclear moments of inertia and the quadrupole moments are 
sensitive checks for the validity of the nuclear structure theories. 

The axially symmetric harmonic oscillator potential with the spin-orbit coupling 
term and the term proportional to the square of the orbital-angular momentum quantum 
number of the nucleon is often used as a model of the nuclear average field. Having the 
nilsson’s considerations [6], the axially symmetric harmonic oscillator characterized 
prolate shapes [7]. It is therefore of interest to extend the applicability of the asymmetric 
model to calculate the energy eigenvalues and eigenfunctions for the possible regions of 
deformation. Accordingly, the single-particle energy eigenfunctions of a nucleon in a 
deformed nuclear field with no axis of symmetry are used to calculate the nuclear 
quadrupole moment. 

    in the present paper we have calculated the quadrupole moments of the deformed 
nuclei in the p-shell: 6li, 7li, 8li, 9be, 10b, 11b, 12c, and 14n, by assuming that these nuclei 
have axes of symmetry. Furthermore, we have used the single-particle wave functions of 
the asymmetric rotor to calculate the quadrupole moments of the nuclei 6li, 7li, 8Li, 9Be, 
10B, 11B, 12C, and 14N as functions of the deformation parameter β, the non-axiality 
parameter g , and the oscillator parameter 0

0wh , which is obtained as function of the 
mass number A, the number of protons Z and the number of neutrons N. 
 
 
2. The Quadrupole  Moment for The Axially   Deformed 
Nuclei 
 

Assuming a charge distribution in accordance with the Thomas-Fermi statistical 
model applied to the oscillator potential one obtains the intrinsic quadrupole moment, to 
the second order in the deformation parameter δ [6] 

)
3
21(ZeR8.0Q 2

0 d+d=                                         (2.1) 

where Z is the number of protons and R is to be taken equal to the radius of charge of the 
nucleus or RZ ≈ 1.2 A1/3 fm, where A is the mass number. 
The relation between the measured quadrupole moment, denoted by Q s , and Q0 is given 
by [8] 
 

0

2

s Q
)3I2)(1I(
)1I(IK3Q

++
+-

=                                         (2.2) 

 



240

where I is the spin-quantum number of the specified nuclear state and K is its component 
along the body-fixed Z-axis. It turns out that the ground state spin of the nucleus is 
always I0 = Ω = K, where Ω is the z-component of the total angular momentum J, except 

when Ω =
2
1 , in which case the ground state spin I0 is given as function of the 

decoupling factor a, as given by Table-III of reference [6]. The decoupling factor a, is 

determined from the expression of the rotational energy for odd-A nuclei, with Ω =
2
1 , as 

follows [8] 
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where Á is the nuclear moment of inertia [3]. 
    Another formula for the measured quadrupole moment, Qs, is given by Greiner and 
Maruhn [5] as follows 
 

),1(
)3I2)(1I(
)1I(IK3QQ

2

0s a+
++
+-

=                                      (2.4) 

Where a  is given in terms of the deformation parameter b  as follows 
 

b
p

=a
5

7
4 ,                                    (2.5) 

 
and the intrinsic quadrupole moment Q0 is given by 
 

b
p

= 2
Z0 ZeR

5
6Q .                                         (2.6) 

 
3. THE SINGLE PARTICLE WAVE FUNCTIONS 
 
For a quadrupole deformation, the equation for the surface of a deformed nucleus is 
given by [8] 
 

],),(Y1[RR ,2,20 å
m

mm jqa+=                        (3.1) 

 
where R0 is the radius of the sphere having the same volume and Y2,μ are the spherical 
harmonic functions. If the body-centered frame was selected as the principal axes, we 
have 

,cos,0,sin
2

1
0,21,21,22,22,2 gb=a=a=agb=a=a --     

 
where β is the deformation parameter and g  is the non-axiality parameter. 
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    If we suppose that the density of the deformed nucleus can be ideally represented by 
an ellipsoidal distribution, then it follows that the average potential should also be 
ellipsoidal. This is most easily achieved by using the anisotropic oscillator as average 
field. Adding a spin-orbit term and a term proportional to the square of the orbital-
angular momentum of the nucleon, to produce the experimental single-particle energy 
levels, the Hamiltonian operator of a nucleon in a deformed non-axial nucleus is then 
given by [7] 
 

( )fqgbw-++w+Ñ-=H ,cos
22 0,2

22
0

222
0

2
2
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ll.sh  
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0                         (3.2) 

The first four terms in this Hamiltonian represent the spherical case while the first five 
terms represent the axially-symmetric case. The frequencies xw , yw  and zw of the 
anisotropic oscillator are related to the frequency 0w  by [7] 
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where 1 stands for x, 2 stands for y, and 3 stands for z. 
    The frequency 0w  is given in terms of the non-deformed frequency 0

0w  by [9] 
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    The single-particle wave functions, which are the eigenfunctions of the Hamiltonian 
operator H, can be obtained by diagonalizing the matrix of the Hamiltonian consisting of 
the first five terms with respect to the basis functions which are the eigenfunctions of the 
Hamiltonian consisting of the first four terms and then applying the stationary non-
degenerate perturbation method for the last term in equation (3.2), the perturbed term. 
The single-particle wave functions are then written in the form [7] 
 

. å
¹

pp W=W=y
ij jii ,Ν                             (3.4) 

    The functions ,, pWN which represent the axially symmetric case, are expanded in 
the form of linear combinations of wave functions, which represent the spherically 
symmetric shape of the nucleus, as follows 
 

 å
SL

Wp
pW SL=W=y

p

,,
iii

i ,,,C,
l

lNN N
N .                 (3.5) 

where 
pWN

iC are the expansion coefficients and S+L=W  is the z-component of the 
nucleon total angular momentum vector j and l)1(-=p  defines the parity of the state. 
The functions LSlN are given by [2] 
 



242

( ) SL
+

r
-

cjqrr
++

G

+-
G

=LS - ,s,
22

3

2
3

0 ),(YL
)]

2
)3([

)
2

2(2
a 2

1

2
l

ll
l

l

l

l NN

N
N

2
-

e       (3.6) 

 

where 7,....,3,2,1,0,
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lN are the Laguerre polynomials and Sc ,s  are the single–particle spin wave 

functions. More details about the construction of the single–particle wave functions 
,iy equations (3.4) and (3.5), can be found in reference [2]. 

 
4. The Quadrupole Moment for the Non-Axially Deformed 
Nuclei 
 
The intrinsic quadrupole moment of a nucleus consisting of Z protons is given by  
    

, å
=

=
Z

i0
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QQ                                             (4.1) 

 
where the single–particle operator Qi is given by [5] 
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    Carrying out the integration in equation (4.2) with respect to the basis functions 

LSlN , equation (3.6), one then obtains  
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    The matrix elements of the spherical harmonic operator 0,2Y  are given by [2] 
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where the last two terms in (4.4) are 3j-symbols of the rotational group R3. The matrix 
elements of the operator r2 are given by [2] 
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where l+= n2N . 
    Filling the single–particle wave functions (3.4) for a given nucleus in a definite state 
and determining the state–expansion coefficients of equation (3.5) it is then possible to 
calculate the quadrupole moment of the specified nucleus by calculating the necessary 
matrix elements of equations (4.4) and (4.5). 
 
 
 
5. RESULTS AND CONCLUSIONS 
    

The adopted treatment makes it possible to calculate the electric quadrupole 
moment for axially–symmetric as well as for non-axially  
symmetric deformed nuclei. Since there are no definite evidences that one of the 
considered p-shell deformed nuclei has not an axis of symmetry it is then better to 
calculate the quadrupole moments of these nuclei by assuming that they have axes of 
symmetry, o0=g , and then repeat the calculations by assuming that these deformed 
nuclei do not have such symmetry axes, o0¹g . Comparing the obtained results with the 
corresponding experimental values it is, then, possible to know whether or not these 
nuclei bosses axes of symmetry. 
    In Table–1 we present the calculated values of the electric quadrupole moments of the 
nuclei 6Li, 7Li, 8Li, 9Be, 10B, 11B, 12C, and 14N, according to formula (2.4) for the axially-
symmetric case and also formulas (2.4) and (4.1) for the non-axial case. In Table-1 we 
present also the corresponding experimental values [10] and the value of the deformation 
parameter b , and the total spin I. The values of the non–axiality parameter g and the 
non-deformed oscillator parameter 0

0wh , which are functions of the mass number A, the 
number of protons Z and the number of neutrons N [9] are also given in Table-1 
    It is seen from Table-1 that the calculated values of the electric quadrupole moments 
for the lithium nuclei 6Li, 7Li, and 8Li are in good agreement with the corresponding 
experimental values for the case of the axially-symmetric shape, while the agreement 
with the experimental values for the other nuclei, 8Be, 9B, 10B, 11B, 2C, and 14N, is better 
in the case of the non-axially symmetric shape. 
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Table-1 Electric quadrupole moments of the nuclei 6Li, 7Li, 8Li, 9Be, 10B, 
11B, 12C, and 14N 

 
Nucleus β pI  γ )MeV(0

0wh  sQ  
(barns) 

.expQ  
(barns) [10] 

Li6  0.06 
0.10 

+1  
+1  

0 
o10  

--- 
9.594 

-0.00081 
-0.00059 

-.00083 
 

Li7  0.17 
0.18 

-

2
3  

-

2
3  

0 
o20  

--- 
11.796 

-0.03992 
-0.03978 

-0.0408 

Li8  0.14 
0.24 

+2  
+2  

0 
o20  

--- 
13.208 

0.03121 
0.03100 

0.0317 

Be9  0.26 
0.19 

-

2
3  

-

2
3  

0 
o30  

--- 
12.561 

0.03921 
0.05214 

0.0530 

B10  0.38 
0.34 

+3  
+3  

0 
o30  

--- 
12.022 

0.07403 
0.08286 

0.08472 

B11  0.37 
0.41 

-

2
3  

-

2
3  

0 
o30  

--- 
12.768 

0.02762 
0.03892 

0.04085 

C12  0.18 
0.13 

+2  
+2  

0 
o30  

--- 
12.238 

0.06403 
0.05921 

0.0600 

N14  0.12 
0.11 

+1  
+1  

0 
o10  

--- 
12.251 

0.01898 
0.01901 

0.0193 
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