The Effect of Both the Size and The Type of Statistical Sampling on The Estimates of Simple Linear Regression Equation Coefficients
Abstract
These papers aim to study the estimation of the simple linear regression equation coefficients using the least square method at different sample sizes and different sampling methods. And so on, the main goal of this research is to try to determine the optimum size and the best sampling method for these coefficients. We used experimental data for a population consist of 2000 students from different schools all over the country. We had changed the sample size each time and calculate the coefficients and then compare these coefficients for different sample sizes with their coefficients of the real population; and the results have been shown that the estimation of the linear regression equation coefficients are close from the real values of the coefficients of the regression line equation for the population when the sample size closes the value (325). As it turns out that the Stratified random sampling with proportional distribution with class sizes gives the best and most accurate results to estimate linear regression equation with least square method.
يهدف البحث الحالي إلى دراسة تقديرات معاملات معادلة خط الانحدار الخطي البسيط باستخدام طريقة المربعات الصغرى وذلك عند حجوم عينات مختلفة وطرق معاينة مختلفة. وبذلك يكون هدف البحث هو محاولة لتحديد الحجم الأمثل والمعاينة الأفضل لتقدير هذه المعاملات. تم استخدام بيانات تجريبية لمجتمع مؤلف من 2000 فرداً من طلاب مدارس مناطق مختلفة من القطر. وقد تم في كل مرة تغيير حجم العينة وحساب المعاملات ثم مقارنة هذه المعاملات لحجوم عينات مختلفة مع معاملات المجتمع الحقيقي؛ وقد بينت النتائج أن تقديرات معاملات معادلة خط الانحدار تقترب من القيم الحقيقية لمعاملات معادلة خط الانحدار للمجتمع عندما يقترب حجم العينة من القيمة (325). كما تبين أن المعاينة بالطريقة العشوائية الطبقية ذات التوزيع المتناسب مع حجوم الفئات يعطي النتائج الأفضل والاكثر دقة لتقدير معادلة الانحدار الخطي بطريقة المربعات الصغرى.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors retain the copyright and grant the right to publish in the magazine for the first time with the transfer of the commercial right to the Tishreen University Journal -Basic Sciences Series
Under a CC BY- NC-SA 04 license that allows others to share the work with of the work's authorship and initial publication in this journal. Authors can use a copy of their articles in their scientific activity, and on their scientific websites, provided that the place of publication is indicted in Tishreen University Journal -Basic Sciences Series . The Readers have the right to send, print and subscribe to the initial version of the article, and the title of Tishreen University Journal -Basic Sciences Series Publisher
journal uses a CC BY-NC-SA license which mean
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.