فضاءات KC الأصغرية وفضاءات LC الأصغرية
Abstract
In this paper, we study KC-spaces; these are the spaces in which every compact subset is closed. Then we introduce the concept of minimal KC-spaces and we study the relation between minimal KC-spaces and minimal Hausdroff spaces. Finally, we introduce a new concept of minimal LC-spaces. Most of the theorems which are valid for minimal KC-spaces will also be valid for minimal LC-spaces.
يقال عن فضاء تبولوجي (X,t) إنه فضاء KC إذا كانت كل مجموعة متراصة فيه مجموعة مغلقة ويقال عنه إنه فضاء LC إذا كان كل فضاء لندلوف جزئي منه يشكل مجموعة مغلقة فيه. ولقد قمنا في هذا البحث بدراسة فضاء KC و فضاء LC ثم قدمنا فضاءات KCالأصغرية و فضاءات LC الأصغرية ودرسنا العلاقة بين فضاءات هاوسدورف الأصغرية وفضاءات KC الأصغرية ثم بينّا أن معظم النتائج المتحققة في حالة فضاءات KC تكون متحققة في حالة فضاءات LC.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors retain the copyright and grant the right to publish in the magazine for the first time with the transfer of the commercial right to the Tishreen University Journal -Basic Sciences Series
Under a CC BY- NC-SA 04 license that allows others to share the work with of the work's authorship and initial publication in this journal. Authors can use a copy of their articles in their scientific activity, and on their scientific websites, provided that the place of publication is indicted in Tishreen University Journal -Basic Sciences Series . The Readers have the right to send, print and subscribe to the initial version of the article, and the title of Tishreen University Journal -Basic Sciences Series Publisher
journal uses a CC BY-NC-SA license which mean
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.