A Geochemical Review of Jabal Al Arab/Southern Syria “Carbonatite” classification

Authors

  • Bashar Baghdadi Damascus University

Abstract

This study provides new indications about Jabal Al Arab/Southern Syria carbonatite, and justifies the exclusion of their carbonates from the international classification upon previous studies. The results were discussed and the conclusions were presented within a geochemical scenario in order to understand the mechanism of formation of these carbonates including their compositions in comparison with similar cases in other volcanic regions around the world. The results show that Jabal Al Arab volcanic carbonates represent sedimentary-origin carbonates that were assimilated during magmatic processes.

 

References

Bagdasarov, Yu. A. Geochemical Features of Upper Vendian Zr Bearing Dolomites, a New Type of Zr Ore Show. Geochemistry international, 30, 1993, 88–98.

Baghdadi, B. Géochimie Aanalytique et Prospection: Application aux Roches Mantelliques de Type Péridotitique. Retrieved from Theses.fr (http://www.theses.fr/2013PA066235), 2013.

Bogoch, R and Magaritz, M. Immiscible Silicate-Carbonate Liquids as Evidenced from Ocellar Diabase Dykes, Southeast Sinai. Contribution to Mineral Petrology, 83, 1983, 227-230.

Brassinnes, S., Balaganskaya, E., Demaiffea, D. Magmatic Evolution of the Differentiated Ultramafic, Alkaline and Carbonatite Intrusion of Vuoriyarvi (kola Peninsula, Russia). A LA-ICP-MS Study of Apatite. Lithos, 85, 2005, 76 – 92.

Camp,V. E. and Roobol, M. J. Upwelling Asthenosphere Beneath Western Arabia and its Regional Implications. Journal of Geophysical Research 97, 1992, 15255-15271.

Chakhmouradian, A. R. High-Field-Strength Elements in Carbonatitic Rocks: Geochemistry, Crystal Chemistry and Significance for Constraining the Sources of Carbonatites. Chemical Geology, 235, 2006, 138-160.

Deines P. and Gold D. P. The Isotopic Composition of Carbonatites and Kimberlite Carbonates and their Bearing on the Isotopic Composition of Deep-Seated Carbon. Geochimica et Cosmochimica Acta, 37, 1973, 1709-1733.

Dawson, J. B., Garson, M. S. and Roberts, B. Altered Former Alkalic Carbonatite Lavas from Oldoinyo Lengai, Tanzania: Inferences for Calcitic Carbonatite Lavas. Geology, 15, 1987, 765-8.

Dawson, J. B. Sodium carbonatite extrusions from Oldoinyo Lengai, Tanzania: Implications for carbonatite complex genesis, in Bell, K., ed., Carbonatites: genesis and evolution. London, Unwin Hyman, 1989, 255-277.

Dawson, J. B. A Supposed Sovite from Oldoinyo Lengai, Tanzania: Result of Extreme Alteration of Alkali Carbonatite Lava. Mineralogical Magazine, 57, 1993, 93-101.

Dunworth, E. A. and Bell, K. The Turiy Massif, Kola Peninsula, Russia: Isotopic and Geochemical Evidence for Multi-Source Evolution. Journal of Petrology, 42, 2001, 377–405.

Eby N., Lioyd F. E., and Woolley A. R. Geochemistry and Petrogenesis of the Fort Portal, Uganda, Extrusive Carbonatite. Lithos, 113, 2009, 785-800.

Giannérini, G., Campredon, R., Féraud, G. and Abou Zakhem, B. Deformations Intraplaques et Volcanisme Associe ; Exemple de la Bordure NW de la Plaque Arabique au Cenozoique. Bulletin de la Société Géologique de France, Huitieme Série 4, 1988, 937-947.

Gischler, E., Swart, P. K., and Lomando, A. J. Stable Isotopes of Carbon and Oxygen in Modern Sediments of Carbonate Platforms, Barrier Reefs, Atolls And Ramps: Patterns and Implications. International Association of Sedimentologists, 41, 2009, 61-47.

Hay R. L. Melilite-Carbonatite Tuffs in the Laetolil Beds of Tanzania. Contributions to Mineralogy and Petrology, 67, 1978, 357-367.

Henderson, P. Inorganic Geochemistry. Pergamon Press, Oxford, 1982, 353.

Iacono-Marziano, G., Gaillard, F., Pichavant, M. Limestone Assimilation by Basaltic Magmas: An Experimental Re-Assessment and Application to Italian Volcanoes. Contributions to Mineralogy and Petrology 155, 2008, 719–738.

Ilani, S., Harlavan, Y., Tarawneh, K., Rabba, I., Weinberger, R., Ibrahim, K., Peltz, S., and Steinitz, G. New K-Ar Ages of Basalts from the Harrat Ash Shaam Volcanic Field in Jordan: Implications for the Span and Duration of the Upper-Mantle Upwelling Beneath the Western Arabian Plate, Geology, 29, 2001, 171-174.

Ismail, M., Delpech, G., Cottin, J.-Y., Gregoire, M., Moine, B. N., and Bilal, A. Petrological and geochemical constraints on the composition of the lithospheric mantle beneath the Syrian rift, northern part of the Arabian plate. In: Coltorti, M., Gregoire, M. (Eds.), Metasomatism in oceanic and continental lithospheric mantle. Geological Society, London, Special Publications, 2008, 223–251. doi:10.1144/SP293.11.

Jarmakani, I. Carbonatites: Appeal to The Government; This is the Most Promising Hope for Mineral Resources in Syria. Environment and Health Journal, 15, 2005, only at http://www.envmt-healthmag.com/archive_detail.asp?issue=15andid_arch=578.

Keith, M. L. and Weber, J. N. Carbon and Oxygen Isotopic Composition of Selected Limestones and Fossils. Geochimica and Cosmochimica Acta, 28, 1964, 1787–1816.

Keller, J. Extrusive carbonatites and their significance, in Bell, K., ed., Carbonatites: genesis and evolution. London, Unwin Hyman, 1989, 70-88.

Krienitz, M.-S., Haase, K. M., Mezger, K., and Shaikh-Mashail, M. A. Magma Genesis and Mantle Dynamics at the Harrat Ash Shamah Volcanic Field (Southern Syria). Journal of Petrology 48, 2007, 1513-1542.

Le Bas, M. J., Keller, J., Kejie, T., Wall, F.,Williams, C. T., and Peishan, Z. Carbonatite Dykes at Bayan Obo, Inner Mongolia, China. Mineralogy and Petrology, 46, 1992, 195–228.

Le Bas, M. J. Standard Rare Earth Element Compositions for Sovitic and Alvikitic Carbonatites. In: Gupta A. K., Onuma. K., Arima, M. (eds) Geochemical Studies on Synthetic and Natural Rock Systems (Kenzo Yagi volume). Allied Publishers, New Delhi, 1996, 90–110.

Long, X. P., Yuan, C., Sun, M., Zhao, G. C., Xiao, W. J., Wang, Y. J., Yang, Y. H., and Hu, A. Q. Archean crustal evolution of the northern Tarim craton, NW China: Zircon U–Pb and Hf isotopic constraints. Precambrian Research, 180, 2010, 272–284.

Lottermoser, B. G. Rare-Earth Element Mineralisation within the Mr. Weld Carbonatite Laterite, Western Australia. Lithos 24, 1990, 151-167.

Loubet, M., Bernat, M., Javoy, M., and Allègre, C. J. Rare Earth Contents in Carbonatites. Earth and Planetary Science Letters, 14, 1972, 226-232.

Mahfoud, R. f., and Beck, J. Composition, Origin, and Classification of Extrusive Carbonatites in Rifted Southern Syria. International Geology Review 31, 1995, 361-378.

Mariano, A. N. Economic Geology of Rare Earth Minerals, in Lipin, B. R. and McKay, G. A., eds., Geochemistry and Mineralogy of Rare Earth Elements. Mineralogical Society of America, Washington D. C., Reviews in Mineralogy, 21, 1989, 309–338.

Mittlefehldt D, W. Genesis of Clinopyroxene-Amphibole Xenoliths from Birket Ram: Trace Elements and Petrologic Constraints. Contributions to Mineralogy and Petrology, 88, 1984, 280-287.

Möller, P., Morteani, G. and Schley, F. Discussion of REE Distribution Patterns of Carbonatites and Alkalic Rocks. Lithos, 13, 1980, 171-179.

Möller P. REE(Y), Nb, and Ta Enrichment in Pegmatites and Carbonatite-Alkalic Rock Complexes. In: Möller P., Černý P., Saupé F. (eds) Lanthanides, Tantalum and Niobium. Special Publication No. 7 of the Society for Geology Applied to Mineral Deposits, vol 7. Springer, Berlin, Heidelberg, 1989.

Möller, P., and Bau, M. Rare-Earth Patterns with Positive Cerieum Anomalies in Alkaline Lake Waters from Lake Van, Turkey. Earth and Planetary Science Latters, 117, 1993, 671-676.

Mouty, M., M. Delaloye, D. Fontignie, O. Piskin and J.-J. Wagner. The Volcanic Activity in Syria and Lebanon between Jurassic and Actual. Schweizerische Mineralogische und Petrographische Mitteilungen, V. 72. 1, 1992, 91–105.

Nasir, S., and Safarjalani, A. Lithospheric Petrology Beneath the Northern Part of the Arabian Plate in Syria: Evidence from Xenoliths in Alkali Basalts. Journal of African Earth Sciences, 30, 2000, 149–168.

Nasraoui, M., Toulkeridis, T., Clauer, N. and Bilal, E. Differentiated Hydrothermal and Meteoric Alterations in the Lueshe Carbonatite Complex (Democratic Republic of Congo) Identified by a REE Study Combined with a Sequential Acid-Leaching Experiment. Chemical Geology, 165, 2000, 109-132.

Nelson D. R., Chivas A. R., Chappell B. W., and McCulloch M. T. Geochemical and Isotopic Systematics in Carbonatites and Implications for the Evolution of Ocean-Island Sources. Geochimica et Cosmochimica Acta, 52, 1988, 1-17.

Orris, G. J. and Grauch, R. Rare Earth Element Mines,Deposits, and Occurrences. United States Geological Survey Open-File Report, 02-189, 2002, 174, available only at http://pubs.usgs.gov/of/2002/of02-189/.

Peccerillo, A. Relationships Between Ultrapotassic and Carbonate-Rich Volcanic Rocks in Central Italy: Petrogenetic Implications and Geodynamic Significance. Lithos, 43, 1998, 267-279.

Pecora, W. T. Carbonatites: A Review. Geological Society of America Bulletin, 67, 1996, 1537-1556.

Pineau F., Javoy M., and Allbgre C. J. Etude Systamatique des Isotopes de l'Oxygene, du Carbone et du Strontium dans les Carbonatites. Geochimica et Cosmochimica Acta, 37, 1973, 2363-2377.

Ponikarov,V. P., Protasevich, L., Maximov, A., and Tkachev, G. Geological Map of Syria, 1:200 000. Moscow: V.O. Technoexport, 1963.

Ponikarov, V. Geological Map of Syria (1: 1,000,000; 2nd Edition). Establishment of Geology and Mineral Resources (Ministry of Petroleum and Mineral Resources), Syrian Arab Republic. 1986.

Pourret O, Davranche M, Gruau G, Dia A. New Insights into Cerium Anomalies in Organic Rich Alkaline Waters. Chemical Geology, 251, 2008, 120-127. doi:10.1016/j.chemgeo.2008.03.002.

Ray, J. S., and Ramesh, R. A Fluid-Rock Interaction Model for Carbon and Oxygen Isotopic Variations in Altered Carbonatites, Journal of the Geological Society of India, 54, 1999, 179-186.

Rosatelli, G., Wall, F., Stoppa, F., and Brilli M. Geochemical Distinctions Between Igneous Carbonate, Calcite Cements, and Limestone Xenoliths (Polino Carbonatite, Italy): Spatially Resolved LAICPMS Analyses. Contributions to Mineralogy and Petrology, 160, 2010, 645-661.

Santos, R. V., Dardenne, M. A., and Matsui, E. Geoquímica de Isótopos de Carbono e Oxigênio dosCarbonatitos do Complexo Alcalino de Mato Preto, Paraná, Brasil Rev. Bras. Geoc., 14, 1990, 153-158.

Santos, R. V. and Clayton, R. N. Variations of Oxygen and Carbon Isotopes in Carbonatites: A Study of Brazilian Alkaline Complexes. Geochimica et Cosmochimica Acta, 9, 1995, 1339-1352.

Savelli, C. The Problem of rock Assimilation by Somma-Vesuvius Magma. Contributions to Mineralogy and Petrology, 18, 1968, 43-64.

Sharkov, Y. V., Lazko, Y. Y., Fedosova, S. P., and Khanna, S. Depth-Derived Inclusions of the Quaternary Volcano Tel-Danun, Southern Syria, in Relation to the Problem of Intraplate Basaltic Magmatism. Geokhimiya, 1989, 1609-1623 (in Russian).

Sharkov, Y. V., Chernyshev, I. V., Devyatkin, Y. V., Dodonov, A. Y., Ivanenko, V. V., Karpenko, M. I., Leonov, Y. G., Novikov, V. M., Khanna, S., and Khatib, K. Geochronology of late Cenozoic basalts in western Syria. Petrologiya 2, 1994, 385-394 (in Russian).

Shaw, J. E., Baker, J. A., Menzies, M. A., Thirlwall, M. F., Ibrahim, K. M. Petrogenesis of the Largest Intraplate Volcanic Field on the Arabian Plate (Jordan): A Mixed Lithosphere–Asthenosphere Source Activated by Lithospheric Extension. Journal of Petrology, 44, 2003, 1657–1679.

Shaw, J. E., Baker, J. A., Kent, A. J. R., Ibrahim, K. M., Menzies, M. A. The Geochemistry of the Arabian lithospheric Mantle—a Source for Intraplate Volcanism?. Journal of Petrology 48, 2007, 1495–1512.

Snyder, G. A., Taylor, L. A., Jerde, E. A., Sharkov, Y., Lazko, Y., and Hanna, S. Petrogenesis of Garnet Pyroxenite and Spinel Peridotite Xenoliths of the Tell-Danun Alkali Basalt Volcano, Harrat AS Shamah, Syria. International Geology Review 35, 1993, 1104–1120.

Stoppa, F. and Woolley, A. R. The Italian Carbonatites: Field Occurrence, Petrology and Regional Significance. Mineralogy and Petrology, 59, 1997, 43-67.

Taylor, H. P., Frechen, J., and Degens, E. T. Oxygen and Carbon Isotope Studies of Carbonatites from the Laacher See District, West Germany and the Alnö District, Sweden. Geochimica et Cosmochimica Acta, 31, 1967, 407-430.

Tostevin, R., A.Shields., M.Tarbuck, G., He, M., O.Clarkson, M., A.Wood, R. Effective Use of Cerium Anomalies as A Redox Proxy in Carbonate-Dominated Marine Settings. Chemical Geology 438, 2016, 146-162.

Treiman, A. H. and Essene, E. J. The Oka Carbonatite Complex, Quebec: Geology and Evidence for Silicate-Carbonate Liquid Immiscibility. American Mineralogist, 70, 1985, 1101-l l l3.

Viladkar, S. G. and Pawaskar, P. B. Rare Earth Element Abundances in Carbonatites and Fenites of the Newania Complex, Rajasthan, India. Bulletin of the Geological Survey of Finland 61, 1989, 113–122.

Von Maravic, H. and Morteani, G. Petrology and Geochemistry of the Carbonatite and Syenite Complex of Lueshe (N.E. Zaire). Lithos 13, 1980, 159-170.

Wall, F. and Mariano, A. N. Rare Earth Minerals in Carbonatites—a Discussion Centered on the Kangankunde Carbonatite, Malawi. in Jones, A. P., Wall, F., and Williams, C.T., eds., Rare earth minerals—Chemistry, origin and ore deposits, London, United Kingdom, Chapman and Hall, The Mineralogical Society, Series 7, 1996, 193–225.

Weinstein, Y., Navon, O., Altherr, R., Stein, M. The Role of Fluids and of Lithospheric Heterogeneity in the Generation of Alkali Basaltic Suites from Northwestern Arabia. Journal of Petrology 47, 2006, 1017–1050.

Woolley, A. R. Alkaline Rocks and Carbonatites of the World. Part 1: North and South America. Austin: University of Texas Press; and Cambridge, England, British Museum of Natural History, 1987.

Woolley, A. R. and Church A. A. Extrusive Carbonatites: a Brief Review. Lithos, 85, 2005, 1-14.

Xu, C,. Wang, L., Song, W., Wu, M. Carbonatites in China: A Review for Genesis and Mineralization. Geoscience Frontiers. 1, 2010, 105-114.

Yang, K. F., Fan, H. R., Santosh, M., F-F Hu. and Wang, K. Y. Mesoproterozoic Carbonatitic Magmatism in the Bayan Obo Deposit, Inner Mongolia, North China: Constraints for the Mechanism of Super Accumulation of Rare Earth Elements. Ore Geology Reviews, 40, 2011, 122–131.

Published

2021-01-14

How to Cite

1.
Baghdadi B. A Geochemical Review of Jabal Al Arab/Southern Syria “Carbonatite” classification. TUJ-BA [Internet]. 2021Jan.14 [cited 2024May8];41(1). Available from: https://journal.tishreen.edu.sy/index.php/bassnc/article/view/7917