Some Application of second-order epi-derivativse in terme of Housdoroff distance.
Abstract
The purpose of this research is toextendsome results introduced by Rockafellar[19] in finite-dimensioal spaces to general Banach space using the Housdoroff distance convergent instead of epigraphical convergent .These results are aplicationsto study the second-order epi-derivatives of function to classeand to study the second-order epi-derivatives of sum two convex functionand to studythe second-order epi-derivatives of Moreau-Yosida approximate function alsoto study ofthe second-order epi-derivatives of composition convex function with linear operator .
الهدف من هذا البحث هو تعميم بعض النتائج التي درسها الرياضي روكافولار [19]في فضاءات منتهية البعد إلى فضاءات باناخ عامة مستبدلاً مفهوم التقارب فوق البياني بمفهوم تقارب مسافة -هاوسدوف وهذه النتائج هي تطبيقاتلدراسة المشتق الثاني لدالة من الصف , لدراسة المشتق الثاني لمجموع دالتين إحداهما من الصف , لدراسة المشتق الثاني لدالة مورو- يوشيدا والعلاقة بين مشتق-بروتو للمؤثر الحال ومشتق بروتو للمؤثر الحال وأيضا لدراسة المشتق الثاني لتركيب دالة مع مؤثر خطي ......الخ.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors retain the copyright and grant the right to publish in the magazine for the first time with the transfer of the commercial right to the Tishreen University Journal -Basic Sciences Series
Under a CC BY- NC-SA 04 license that allows others to share the work with of the work's authorship and initial publication in this journal. Authors can use a copy of their articles in their scientific activity, and on their scientific websites, provided that the place of publication is indicted in Tishreen University Journal -Basic Sciences Series . The Readers have the right to send, print and subscribe to the initial version of the article, and the title of Tishreen University Journal -Basic Sciences Series Publisher
journal uses a CC BY-NC-SA license which mean
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.