تطبيقات خوارزمية Boosting في التنبؤ لمعالجة البيانات التسلسلية باستخدام الشبكات العصبونية التكرارية
Abstract
لقد أظهرت طرائق تجميع النماذج في مجالي التصنيف (Classification) والتقهقر أو التتالي (Regression) تفوقها على الطرائق الأخرى نظرياً وعملياً. والـBoosting هي إحدى هذه الطرائق التي أثبتت فعاليتها و مقدرتها على تحسين نتائج أي خوارزمية تعليمية. لقد قمنا في هذا البحث باستخدام الخوارزمية Boosting مع الشبكات العصبونية الصنعية التكرارية وذلك في مجال تنبؤ السلاسل الزمنية بخطوة زمنية واحدة بالاعتماد على مجموعة اختبار كل سلسلة زمنية. هذه السلاسل معروفة بتطبيقاتها الواسعة في مجالات عديدة. ثم قورنت النتائج التي تم الحصول عليها باستخدام الخوارزمية المطروحة بأفضل النتائج التي تم الحصول عليها باستخدام خوارزميات أخرى. وأظهرت هذه النتائج مقدرة الشبكات العصبونية الصنعية على تنبؤ السلاسل الزمنية و أن تجميع نتائج عدة شبكات باستخدام الـBoosting يعطي نتائج أكثر استقراراً من النتائج التي نحصل عليها باستخدام شبكة عصبونية واحدة.
Ensemble methods used for classification and regression have shown that they are superior than other methods, theoretically and empirically. Boosting is one of these methods which is a powerful tool for improving the performance of any learning algorithm. In this research, we have used Boosting algorithm with Recurrent Neural Networks in Regression context to predict time series on single-step ahead depending on each test set of time series. These series are known by its wide applications in many fields. Then, the final results by using Boosting algorithm have been compared with the best obtained results by using other algorithms. These results have also shown the ability of Artificial Neural Networks (ANNs) in predicting time series. Also combination results of many ANNs by using Boosting algorithm give more stability than results that obtained by using single neural network.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors retain the copyright and grant the right to publish in the magazine for the first time with the transfer of the commercial right to the Tishreen University Journal -Basic Sciences Series
Under a CC BY- NC-SA 04 license that allows others to share the work with of the work's authorship and initial publication in this journal. Authors can use a copy of their articles in their scientific activity, and on their scientific websites, provided that the place of publication is indicted in Tishreen University Journal -Basic Sciences Series . The Readers have the right to send, print and subscribe to the initial version of the article, and the title of Tishreen University Journal -Basic Sciences Series Publisher
journal uses a CC BY-NC-SA license which mean
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.