Numerical Spline Algorithm for Solving Falkner–Skan Equation
Abstract
This paper presents a numerical spline algorithm for the Falkner–Skan equation (FSE) over a semi-infinite interval. This algorithm is based on change of variable from interval to [0,1], then the FSE is transformed into first initial value problem (IVP) and second IVP for improving convergence. Spline polynomials with four collocation points are applied directly to the IVPs without their reducing to a system of first-order differential equations. The study shows that purposed algorithm is consistent and convergent with a global truncation error from order eighth. The efficacy of our algorithm is tested by solving the problems of Blasius, Pohlhausen, Homann and Hiemenz flows, and other special cases over various intervals, where the results of comparisons with other methods indicate the efficiency of our algorithm and enable it to provide solutions with high numerical accuracy.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors retain the copyright and grant the right to publish in the magazine for the first time with the transfer of the commercial right to the Tishreen University Journal -Basic Sciences Series
Under a CC BY- NC-SA 04 license that allows others to share the work with of the work's authorship and initial publication in this journal. Authors can use a copy of their articles in their scientific activity, and on their scientific websites, provided that the place of publication is indicted in Tishreen University Journal -Basic Sciences Series . The Readers have the right to send, print and subscribe to the initial version of the article, and the title of Tishreen University Journal -Basic Sciences Series Publisher
journal uses a CC BY-NC-SA license which mean
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.