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O ABSTRACT 0O

In this paper we one of the structural optimization problems is discussed. It
concerns the case of a thin walled beam made by a cold forming procedure. Hereafter, the
paper presents an improved formulation of the geometric and technological constraints
used in the optimum design problem of a mono-symmetrical | section under a pure bending
loading. After formulating this problem properly, the paper proposes an efficient genetic
algorithm; then, it shows how to implement it using a MATLAB program. At the end, the
effectiveness of this adapted genetic algorithm program is examined by comparing its
results with the solution given by the graphical method in a special case.
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Introduction:

Cold-formed thin-walled beams with open cross sections are very commonly used in
both temporary and permanent civil engineering constructions. These beams are used in
practice as primary or secondary load bearing elements. The technology of cold rolling
steel and aluminum structural member fabrication is now very extended. Its market puts
the design engineer in front of a great variety of functionally or structurally available shape
of the open cross section. In such a case, one of the best way to choose the section, i.e.
determine its parameters, is to use the techniques of structural optimization. The best way
to boost the use of these techniques by the structural engineers is to incorporate them in the
commercial structural design and analysis software. This incorporation needs the
elaboration of new simple and general algorithms of structural optimization. In this paper
we have chosen to develop one of these algorithms and to examine its limitations. Our
choice of the genetic algorithm method is justified by its mathematical simplicity and by its
generality.

Importance and aims of the paper:

Scientific literature has witnessed an increasing number of publications [1] showing
the results of applying the techniques of structural optimization in the design of open cross
sections. This type of structures becomes more and more the best solution for many
applications in the domain of civil, mechanical and aerospace engineering.

A deep surveying of this literature showed that we can improve the formulation
given by some authors [2] & [3], from where we can fix the first aim of this study as to
make this formulation more consistent with the real situation faced by design engineers
and more adapted with the issue of availability of these sections in the industrial market.
Our new formulation in this paper concerns the mono-symmetrical | section cold formed
thin walled beam see Fig. 1.

The second aim of this paper is to expose an enhanced mathematical procedure of the
optimization of the section shape, based on an adapted version of a MATLAB Genetic
Algorithm program [4] & [5], which minimizes the area of the cross section while
respecting the general strength, and local and global buckling constraints. More than this,
we will examine the validity of this algorithm, by two ways, first, by studying the results of
its application to a simple benchmark problem, i.e. the case of a simple beam in a pure
bending. The second way to examine this algorithm, is to compare its analytical results
with the results of a its simplified version of two variables, where the solution is
graphically possible.
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Fig. 1. Mono-symmetrical | section

The Methodology:

e Statement of the optimization problem:

The optimization problem is formulated for a simply supported beam loaded with
two moments of value M, applied to the beam ends (pure bending).

In this first paper the objective function to be optimized is the beam mass. Supposing
that the material is homogenous and the beam section is uniform, this function can be
replaced by the area of the beam cross section: F(x;)=A

M M

. L %

Fig. 2. Simply supported beam loaded with fixed moment at its ends
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Generally the sections of cold rolled thin walled beams are formed from a hot rolled
steel strips or sheets which are available in the market in different widths and thicknesses.
By folding processes of these strips and sheets, the desired cross section can be fabricated.

The design variables of the optimization problem, in this case, will be the cross
section dimensions: h, b in addition to the strip width B and its thickness t.

Even it’s clear that B & t are both discrete; we will consider them as continuous
variables without loosing the validity of our results.

After choosing the objective function and the design variables, we will discuss the
geometrical, technological and structural constraints.

The geometrical constraints must meet the hypothesis of the beam bending theory, so
we assume H/L<0.1; and they must be adequate with the thin walled beam definition,
where we prefer to replace the constraint H/t > 10 adopted in [2] by the four constraints:
10<°h/t <50, 0.5<b/h <1 for each element of the cross section.

Similarly, the constructional or technological constraints will replace the constraints
2allJ0t000OHmax and b 00t O OHmax adopted in [2] by 4b+h=B, which reflect better
the folding process of doubly symmetric 1-beam section shown in figure 3.

In addition to the above mentioned geometrical and constructional constraints, the
basic structural constraints [6], of the design of thin-walled structures, i.e. strength and
stability constraints are maintained. So the strength constraint is determined by the
allowable stress o, and takes the following simple form.

M <M, with M, =M :2;2

Ol

where J, is the moment of inertia of the cross section area, with respect to z axis.

And the general stability constraint, as lateral distortional buckling condition may be
written in the following form:

T3 2
M<M, M,=-"E y—‘(1+2(1+v))”—2J—w
n,L \[2L+v) L2 J,

where n, safety coefficient with respect to general loss of stability.
J, moment of inertia of the cross section area, with respect to y axes
J,, warping moment of inertia of the cross-section

191



BEYPRTSI bl U e Cagiles ohaall (38 jila 3 el | pdaid Ji) prenail) Al dins 42 la

Fig. 3. Folding process of doubly symmetric I-beam section

Finally the local stability constraint may be written in the form:

- first condition of local stability (for the
J Z
M SNIS; M3:2nb|H 'O-max.cr

7°E (t jz
O maxer — .
3(1-+v2) b

- second condition of local stability (for the web)
JZ
M SIv|4; M4:2m'o-max.cr

2 2
O rax.cr :”—Ez(lj where a=(h+3t)/2
T 20-vo)\a
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After discussing the objective function, and all the constraints we can summarize our
problem in the following standard mathematical form as follow:

min f (x) = (4b+h)t
(c,) 4b+h=B

c,) 103%50

1 b
c,) —<-—<1
(cs) > <t
L
(c,) ﬁglo
subject to < VIR
() M<M,, M;=M = H O
J.J 2
(c;) M<M,, |v|2=£ vt (1+2(1+V))”—2J—w
n,L\2@+v) L2 J,
J
c,) M<M,, M,=2——0o
( 7) 3 3 nb|H max.cr
) M<M, M,=2Y 5
n,H '

e Numerical treatment:

It’s clear from the above formulation especially constraints no.(5,6,7,8) that the
problem is nonlinear, and it is very hard to get the derivatives of the constraint functions
with respect to the design variables as the former are implicit functions of the latter. So, we
will not use a gradient based method for solving this problem, but we will adopt an
artificial intelligence technique based on the mechanism of natural selection called the
Genetic Algorithm (GA).

GAs differ from traditional search techniques in several ways [7]:

e GAs do not require problem specific knowledge to carry out a search.

e GAs use stochastic operators rather than deterministic operators and appear to be
robust in noisy environments.

e GAs operate on multiple partial solutions simultaneously (sometimes called
implicit parallelism), gathering information from a population of search points to direct
subsequent search efforts. Their ability to maintain multiple partial solutions concurrently
helps make GAs less susceptible to the problems of local maxima and noise.

We have written a Matlab code which calls a GA built in function. A rapid survey of
the influence of the GA parameters, i.e. population size, maximum number of generations,
mutation and crossover fraction has shown that this last plays the essential role in
improving the convergence of the problem solution. To overcome the difficulty of tuning
this parameter, we have rerun the code for varying values of it to choose the one suite our
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problem. The following figure determines the best crossover fraction occurring when the
objective function has its minimum value (span = 3500 mm).
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Fig. 4. Variations of the objective function with crossover fraction

For a constant value for the external applied moment and a varying span, we have
determined the minimum value of the objective function then we traced the diagram shown
in figure.5., giving the variation of the objective function with the span.
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Variation of the objective function with the span
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Fig. 5. Variation of the objective function with the span length
In

general, we can see that the objective function is increasing with the span reflecting the
lower bounded constrained ratio between the total depth of the section and the span.

The above mentioned pattern of variation is monotone everywhere except around the
value (1500), where we have observed a changing in the dominance of constraints.

In reality, for the span L=1000, the geometrical, constructional and the beam bending
hypothesis constraints in addition to the M; strength constraint were largely dominant.

For the other values, the M, general stability constraint becomes dominant.

Results and Discussion:
e Verification of numerical results:

A global comparison of our numerical results with those obtained in [2] was very
satisfactory as we can see in figure. 6.

The differences between our results indicated by () linked by the blue line and their
results represented by the (0) linked by red line can be explained by our modifications of
the geometrical and constructional constraints.
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Global comparison of GA results & results obtained in [2]
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Fig. 6. Global Comparison of GA results & results obtained in [2]

For further verification of our results, we have compared the obtained results with
the graphical solution of a reduced optimization problem. Hereafter, we will call the non-
reduced problem, as the 4 variables original problem, while the reduced one will be called
as the 2 variables reduced problem. In the reduced problem we fixed the values of the strip
dimensions for every beam span as indicated in the following table.

These fixed values were inspired by the solution of the 4 variables version of the
specified span as one can see on the following tables.

Tab. 1. Strip widths and thicknesses for the reduced problem

Span Length (mm) | Strip thickness (mm) | Strip width (mm)

N

WWWWWWW W w|IN
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Choosing the case of L=4000 mm, substituting the corresponding fixed values in the
problem formulation and resolving for the optimum solution using the same GA program
we obtained a multitude of optimum solutions all having the same objective function value.

Tab. 2. Numerical results of the reduced problem for L=4000mm

125.4477 | 123.6381
125595 | 123.6011
126.552 | 123.3621
126.8607 | 123.2847

127.17 | 123.2075

149.2171 | 117.6957
149.2237 | 117.6942
149.363 | 117.6594
149.4138 | 117.6464
149.5797 | 117.6052

This fact was confirmed by the graphical solution (possible only in the case of 2
variables problems). Where the feasible region is restricted to a linear segment containing
all the points represented by the optimum solutions (b,h). The general constraints of the
optimization problem are transformed into plane curves or straight lines that appear on the
figure no. 7, in the following order:

- g1 represents the line expressing constraint c;.

- 02 & g3 represent constraint c,.

- 04 & Qs represent constraint cs.

- And finally ge represents constraint cs.
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Optimum graphical solution in the case L=4000 mm
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Fig. 7. Graphical solution in the case L = 4000 mm
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Comparison of the 4 variables and 2 variables reduced problem solutions
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Fig. 8. Comparison of the 4 variables & 2 variables reduced problem
solutions (Flange width)
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At figure no. 8 we can observe that the optimum values of the flange width, given by
the GA Matlab solution of the 4 variables problems, are located between the minimum and
maximum values corresponding to points Il & I respectively.

At figure no. 9 we can observe that the optimum values of the web height, given by
the GA Matlab solution of the 4 variables problems, are located between the minimum and
maximum values corresponding to points | & 11 respectively.

The optimality of these solutions is confirmed by the fact that the solution is closer to
points .

Conclusions and Recommendations:

In this paper we have readjusted the formulation of an optimum structural design
problem in order to make it closer to the real conditions of the engineering practice. In
reality, we have replaced the irrational geometrical constraints by more adequate ones
inspired by the availability of the steel sheets and strips in the market. Readjusting the
problem formulation makes it more ready to be directly implemented in structural
engineering software.

The new constraints in our modified formulation have imposed the use of non-
gradient based optimization techniques; among these techniques we have chosen the
genetic algorithm method for its simplicity and easiness of its implementation in the aimed
software. In addition we have examined the suggested algorithm, i.e., GA Matlab tool, by
an appropriate way which has shown that it is a good tool to solve such a problem.

Further investigation can be done to evaluate the effect of different loading cases and
different support types.
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