تحديد معامل مرونة المادة عن طريق قياس العيوب الناتجة عن انعطاف الجائز المحمل بحمولات الانحناء

Authors

  • Haitham Asmar Tishreen University

Abstract

تحديد معامل مرونة المادة عن طريق قياس العيوب الناتجة عن انعطاف الجائز المحمل بحمولات الانحناء هيثم أسمر يقدم هذا البحث نموذجًا نظريًا وحلاً تصميميا للجهاز الذي يحدد معامل المرونة عن طريق ثني المادة (عينات الاختبار) بدلاً من التمدد المعتاد. تم تصميم الجهاز وتجميعه واختباره بنجاح في المختبر. تم إجراء تحديد تجريبي لمعامل المرونة عن طريق قياس انحراف العينات تحت الحمل الثابت بالاضافة لحساب معامل المرونة من العلاقات النظرية بالإضافة الى إجراء القياس على الجهاز و تحليل أخطاء القياس الناتجة عن الجهاز.بالنتيجة تبين أن أخطاء القياس بحدود %2,لذلك يمكن اعتبار أن قيمة معامل المرونة المقاسة على الجهاز المصمم تظل كافية للقيمة النظرية لمعامل المرونة للمواد التي تم تحليلها.   The paper presents a theoretical model and design solution for the device which determines the modulus of elasticity by bending the material (test samples), instead of the usual stretching. The device was designed, assembled and successfully tested in the laboratory. Experimental determination of the elastic modulus was conducted by measuring the deflection of samples under a constant load. The elasticity factor was calculated from the theoretical relations as well as the measuring procedure on the instrument. The measurement errors of the instrument were analyzed. As a result, the measurement errors were found at 2%. Therefore, Values of the elastic modulus resulted from theoretical relations. Measurement was performed and measurement errors, i.e. device errors, were analyzed.

References

RADOVIC, E.; LARA-CURZIO, E.; RIESTER, L. Comparison of different experimental techniques for determination of elastic properties of solids. // Materials Science and Engineering: A. 368, 1-2(2004), 56-70.

AMBER, M. J.; COOKE, K. E.; MANN, A. B.; DERBY, B. Accurate determination of Young's modulus and Poisson's ratio of thin films by a combination of acoustic microscopy and nanoindentation. // Thin Solid Films. 398-399(2001), 299-305.

RHO, J. Y.; ASHMAN, R. B.; CHARLES, H. T. Young's modulus of trabecular and cortical bone material: Ultrasonic and microtensile measurements. // Journal of Biomechanics. 26, 2(1993), 111-119.

KIESEWETTER, L.; ZHANG, J-M. Determination of Young's moduli of micromechanical thin films using the resonance method. // Sensors and Actuators A: Physical. 35, 2(1992), 153-159.

MOTRA, H. B.; HILDEBRAND, J.; DIMMIG-OSBURG, A. Assessment of strain measurement techniques to characterize mechanical properties of structural steel. // Engineering Science and Technology, an International Journal. 17, 4(2014), 260-269.

MIRABEL, E.; REAL, E. On the calculation of deflections in structural stainless steel beams: an experimental and numerical investigation. // Journal of Constructional Steel Research. 54, 1(2000), 109-133.

OLIVER, W. C.; PHARR, G. M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. // Journal of Materials Research. 19, 1(2004), 3-20.

KVETAN, K.; BUČÁNY, M.; BOŠÁK, O.; KUBLIHA, M.; KOTIANOVÁ, J. Measuring of Young's modulus of thin samples using the quick bending vibrations of Searle’s pendulum. // ActaMechatronica - International Scientific Journal about Mechatronics. 1, 2(2016), 1-5.

OHTSUKI, A. A new measuring method of Young’s modulus for flexible materials. // SEM annual conference and exposition on experimental and applied mechanics, Proceedings of the 2005 SEM annual conference / Portland, 2005, 113(1)-113(8).

TOHMYOH, H.; AKANDA, M. A. S.; TAKEDA, H.; SAKA M. Determination of elastic-plastic properties of metallic thin wires by small-span bending test. // Glass, Inverse Problems, History of Fracture Mechanics And Fatigue, Ice Mechanics and Ice Structures Interaction, Proceedings of the ICF12, Ottawa, 2009, 1-6.

FICKER, T. Young’s modulus of elasticity in student laboratories. // Physics Education. 34, 6(1999), 376.

PACHECO Q. M. E.; PINA, E. The elastic rod. //Revisit Mexicana de Fi´sica E. 53, 2(2007), 186-190.

BOWDEN, G. Stretched wire mechanics. // 8th International Workshop on Accelerator Alignment, Proceedings of the IWAA2004, Geneva, 2004, 1-9.

TOBUSHI, H.; FURUICHI, Y.; SAKURAGI, T.; SUGIMOTO, Y. Bending fatigue properties of a super elastic thin tube and a high-elastic thin wire of TiNialloy. // Materials Transactions. 50, 8(2009), 2043-2049.

ANTHERIEU, G.; CONNESSON, N.; FAVIER, D.; MOZER, P.; PAYAN, Y. Principle and experimental validation of a new apparatus allowing large deformation in pure bending: Application to thin wire. // Experimental Mechanics. 56, 3(2016), 475-482. https://doi.org/10.1007/s11340-015-0102-5

د. هيثم أسمر. مقاومة المواد /2/.مديرية الكتب والمطبوعات. جامعة تشرين 2010.16

Published

2019-02-25

How to Cite

1.
Asmar H. تحديد معامل مرونة المادة عن طريق قياس العيوب الناتجة عن انعطاف الجائز المحمل بحمولات الانحناء. Engineering Sciences Series [Internet]. 2019Feb.25 [cited 2020Nov.30];41(1). Available from: http://journal.tishreen.edu.sy/index.php/engscnc/article/view/8392