Converges in of nearest neighbor regression function estimate for strong mixing processes
Abstract
In this paper, we will study the issue of estimating regression function using k-nearest neighbors method (knn) for mixing processes. We will extend the convergence in for knn regression from independent case to the dependent case; In addition, we will conduct a simulation study using R software program to display the importance and influence of choosing number of neighbors (k) and the sample size (n) on behavior of the estimator. For this purpose, the mean squares error criterion (MSE) was used. The high variability of the MSE results shows that knn estimators are very sensitive to the choice of the number of neighbors. More results show that the higher value of n, the more accurate and effective the estimator.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors retain the copyright and grant the right to publish in the magazine for the first time with the transfer of the commercial right to the Tishreen University Journal -Basic Sciences Series
Under a CC BY- NC-SA 04 license that allows others to share the work with of the work's authorship and initial publication in this journal. Authors can use a copy of their articles in their scientific activity, and on their scientific websites, provided that the place of publication is indicted in Tishreen University Journal -Basic Sciences Series . The Readers have the right to send, print and subscribe to the initial version of the article, and the title of Tishreen University Journal -Basic Sciences Series Publisher
journal uses a CC BY-NC-SA license which mean
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.