مجموعات تحول قيم بعض الداليات العقدية في فضاء كاراتيودوري المعمم
Abstract
يقدم هذا البحث طريقة معينة لتحديد مجموعات تحول قيم بعض الداليات الخطية في فضاء كاراتيودوري المعمم وهو فضاء التوابع التحليلية في قرص الواحدة التي تقبل التمثيل التكاملي الآتي: , حيث دالة غير متناقصة ضمن المجال وتحقق الشرط . و قد تم ، في هذا الفضاء، البرهان على أن مجموعة قيم الدالي: عندما تكون كثيرة حدود في القرص ، هي قرص مغلق تم تحديد مركزه ونصف قطره . وقد تم أيضاً تحديد مستقرات بعض الداليات الأخرى في هذا الفضاء. This paper presents a certain method to determine the range of variability of some functionals defined in Generalized Caratheodory Class ( i.e the class of analytic functions in the unit disk of the form: , where is a nondecreasing function on the interval such that ). It has been proved that the range of variability of functional where is a polynomial in , is the closed disc with and precisely determined . Also the range of variability of some other functionals determined.Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors retain the copyright and grant the right to publish in the magazine for the first time with the transfer of the commercial right to the Tishreen University Journal -Basic Sciences Series
Under a CC BY- NC-SA 04 license that allows others to share the work with of the work's authorship and initial publication in this journal. Authors can use a copy of their articles in their scientific activity, and on their scientific websites, provided that the place of publication is indicted in Tishreen University Journal -Basic Sciences Series . The Readers have the right to send, print and subscribe to the initial version of the article, and the title of Tishreen University Journal -Basic Sciences Series Publisher
journal uses a CC BY-NC-SA license which mean
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.