استخدام التقسيم النظامي للسيمبلكس النوني القياسي في إثبات مبرهنة بروور للنقطة الثابتة
Abstract
تعد مبرهنة بْرووَر للنقطة الثابتة من المبرهنات الهامة في الأدبيات الرياضية، وهي تعميم لمبرهنة القيمة المتوسطة للتوابع المستمرة، ولها العديد من الإثباتات المعروفة. نثبت أولاً أنه إذا كان السيمبلكس القياسي في وكان لدينا تابع مستمر من إلى نفسه، فإن لهذا التابع نقطة ثابتة واحدة على الأقل، وذلك اعتماداً على التقسيم النظامي للسيمبلكس النوني القياسي. ثم نثبت أنه أية مجموعة متراصة ومحدبة في فإنها تتمتع بخاصة النقطة الثابتة.
The Brouwer Fixed Point Theorem is one of the very well–known theorems in mathematics. It is a generalization of the Intermediate-Value Theorem. It also has many proofs. First, we prove that if is a standard simplex in , and we have a continuous function from to itself, then, by using the standard division of the standard n–simplex, this function has at least one fixed point. Then, we prove that any compact convex subset in has the property of the fixed point.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors retain the copyright and grant the right to publish in the magazine for the first time with the transfer of the commercial right to the Tishreen University Journal -Basic Sciences Series
Under a CC BY- NC-SA 04 license that allows others to share the work with of the work's authorship and initial publication in this journal. Authors can use a copy of their articles in their scientific activity, and on their scientific websites, provided that the place of publication is indicted in Tishreen University Journal -Basic Sciences Series . The Readers have the right to send, print and subscribe to the initial version of the article, and the title of Tishreen University Journal -Basic Sciences Series Publisher
journal uses a CC BY-NC-SA license which mean
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.