مبرهنة شاودر للنقطة الثابتة
Abstract
تــعد مبرهنــة شاودر للنقطــة الثابتـة تعميمـاً لمبرهنـة برووَرْ للنقطــة الثابتــة Brouwer’s Fixed Point Theorem التي تنص على أنّ: كل مجموعة جزئية غير خالية متراصة compact ومحدبة convex من En تتمتع بخاصة النقطة الثابتة fixed point property، (حيث أو، R مجموعة الأعداد الحقيقية، ومجموعة الأعداد العقدية وn عدد صحيح موجب). وإثبات صحة مبرهنة شاودر للنقطة الثابتة يعتمد على مبرهنة برووَرْ آنفة الذكر، انظر مثلاً الصفحة 61 من [5]. كما أنَّ هناك إثباتاً آخر لها يعتمد على توطئة (تمهيدية) سبيرنر Sperner’s Lemma، انظر[2]. سنثبت صحتها دون استخدام مبرهنة بروور للنقطة الثابتة، وذلك اعتماداً على توطئة متعلقة بـ - النقطة الثابتة fixed point - .
Schauder’s Fixed Point Theorem is considered to be one of the most prominent and well-known theorem in Fixed Point Theory, since it is used in Economy, Game Theory, and Deferential Equations. It was proved by the Polish mathematician Juliusz Schauder in 1930. It is a generalization of Brouwer’s Fixed Point Theorem; and its proof depends on Brouwer’s Fixed Point Theorem; see, for example, [5]. It has also another proof using Sperner’s Lemma; see [2]. We will prove it without using Brouwer’s Fixed Point Theorem; our proof will depend on a lemma about - fixed point.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors retain the copyright and grant the right to publish in the magazine for the first time with the transfer of the commercial right to the Tishreen University Journal -Basic Sciences Series
Under a CC BY- NC-SA 04 license that allows others to share the work with of the work's authorship and initial publication in this journal. Authors can use a copy of their articles in their scientific activity, and on their scientific websites, provided that the place of publication is indicted in Tishreen University Journal -Basic Sciences Series . The Readers have the right to send, print and subscribe to the initial version of the article, and the title of Tishreen University Journal -Basic Sciences Series Publisher
journal uses a CC BY-NC-SA license which mean
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.