تقارب النقاط السرجية لدوال محدبة – مقعرة بالنسبة إلى مسافة - هاوسدورف
Abstract
الهدف من هذا البحث هو دراسة وتعميم بعض النتائج المتعلقة بـ - الحلول لمسائل بمتحول واحد (محدبة) إلى - الحلول لمسائل بمتحولين ( محدبة-مقعرة). إذ نعرف مسافة - هاوسدورف على صفوف الدوال المحدبة-المقعرة كما نعرف مسافة - هاوسدورف على صفوف دوال ليست بالضرورة
محدبة-مقعرة. ومن أجل المتتالية ندرس تقارب هذه المتتالية بدلالة تقارب المقاطع الموافقة لها، ثم نبرهن أن متقاربة نحو بالنسبة إلى مسافة - هاوسدورف إذا وفقط إذا كانت متتالية المجموعات متقاربة نحو المجموعة بالنسبة إلى مسافة - هاوسدورف . ونحصل على نتائج مشابهة تتعلق - التفاضلات الجزئية لدوال محدبة-مقعرة ومغلقة معرفة على فضاءات باناخ .
التصنيف الرياضي لهذا الموضوع AMS الأول : 46B20 الثاني : 49J45 .
The aim of this paper is to study and generalize some results concerned with the - solutions of one variable (convex) problems to the - solutions bivriables
(convex-concave) problems. We define the - Housdorff distanceon the classes to convex-concave functions and the - Housdorff distance on the classes not necessary convex-concave functions. For the sequence ; We study the convergence of this sequence in terms of level sets convergence, and we show that the sequence is - Housdorff distance to if and only if for each the sequence of sets is - Housdorff distance convergent to . An analogous result holds for - Subdifferential of convex-concave closed functions defined on a Banach space.
AMS Subject Numbers : Primary : 46B20
Secondary : 49J45.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors retain the copyright and grant the right to publish in the magazine for the first time with the transfer of the commercial right to the Tishreen University Journal -Basic Sciences Series
Under a CC BY- NC-SA 04 license that allows others to share the work with of the work's authorship and initial publication in this journal. Authors can use a copy of their articles in their scientific activity, and on their scientific websites, provided that the place of publication is indicted in Tishreen University Journal -Basic Sciences Series . The Readers have the right to send, print and subscribe to the initial version of the article, and the title of Tishreen University Journal -Basic Sciences Series Publisher
journal uses a CC BY-NC-SA license which mean
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.