دراسة المشتقات فوق البيانية من المرتبة الأولى للدوال المحدبة في فضاءات منظمة
Abstract
درس الرياضي روكافولار المشتقات فوق البيانية من المرتبة الأولى في فضاءات منتهية البعد مستخدماً مفهوم التقارب فوق البيان ومن ثم تمت دراستها من قبل دو في فضاءات باناخ انعكاسية مستخدماً مفهوم التقارب لموسكو . أما عملنا فسيكون تعميم هذه المشتقات إلى فضاءات منظمة عامة باستخدام مفهوم جديد للتقارب يسمى تقارب سلايس ويتطابق مع مفهوم التقارب فوق البيان إذا كان الفضاء منتهي البعد , ويتطابق مع تقارب موسكو إذا كان الفضاء انعكاسياً ويعود هذا المفهوم إلى الرياضي بيير.
Rockafeller introduced the epi- derivatives in terms of epi-convergence in finit dimensional space , and Do studied these results in terms of Mosco- convergence in reflexive Banach space.
The aim of this paper is to extend these setting to general normal spaces, using a stronger convergence notion called Epigraphical Slice Convergence introduced by Beer. It coincides with the epi- convergence in finit dimensional space and coincides with Mosco-convergence in reflexive Banach space.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors retain the copyright and grant the right to publish in the magazine for the first time with the transfer of the commercial right to the Tishreen University Journal -Basic Sciences Series
Under a CC BY- NC-SA 04 license that allows others to share the work with of the work's authorship and initial publication in this journal. Authors can use a copy of their articles in their scientific activity, and on their scientific websites, provided that the place of publication is indicted in Tishreen University Journal -Basic Sciences Series . The Readers have the right to send, print and subscribe to the initial version of the article, and the title of Tishreen University Journal -Basic Sciences Series Publisher
journal uses a CC BY-NC-SA license which mean
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.