دراسة المشتقات فوق البيانية في فضاءات منظمة بالنسبة لتبولوجيا سلايس
Abstract
إن مفهوم المشتقات فوق البيانية, عرفها ودرسها الرياضي روكافولار [18] في فضاءات منتهية البعد مستخدما مفهوم التقارب فوق البيان ثم درسها كومنيتي [11] في فضاءات باناخ انعكاسية باستخدام مفهوم تقارب موسكو فوق البيان. الهدف من هذا البحث هو دراسة بعض هذه النتائج وتعميمها إلى فضاءات خطية منظمة غير منتهية البعد مستخدمين تقارباً جديداً يدعى تقارب سلايس فوق البيان. تسمح هذه النتائج في تحديد الشروط الأمثلية اللازمة والكافية لمسائل الأمثليات المحدبة العامة بالإضافة إلى أنَّها تملك تطبيقات هامة في العديد من النظريات الرياضية.
The epi-derivatives introduced and studied by Rockafellarin [18] finite-dimensional spaces in term to epi-convergence, are studied to convex functions in reflexive Banach spaces by cominite [11] in term to Mosco-epi-convergence. The purpose of this paper is to extend these results to general norm spaces, using a stronger convergence notion which is called Epigraphical Slice Convergence. Necessary and sufficient conditions are derived for general convex optimization. Moreover, this type of results has found application in numerous situations.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors retain the copyright and grant the right to publish in the magazine for the first time with the transfer of the commercial right to the Tishreen University Journal -Basic Sciences Series
Under a CC BY- NC-SA 04 license that allows others to share the work with of the work's authorship and initial publication in this journal. Authors can use a copy of their articles in their scientific activity, and on their scientific websites, provided that the place of publication is indicted in Tishreen University Journal -Basic Sciences Series . The Readers have the right to send, print and subscribe to the initial version of the article, and the title of Tishreen University Journal -Basic Sciences Series Publisher
journal uses a CC BY-NC-SA license which mean
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.