تحليل فضاء الحالات للحاسبات الدورية المنتهية
Abstract
ندرس في هذا البحث التحليل الشبكي (sp –تجزئة ) لفضاء الحالات Qn لحاسبة دورية منتهية
An=(Qn , X , Y , δn , λn)، حيث n عدد طبيعي (2n ≥ ). يشمل هذا البحث على نتائج تميز هذا النوع من التجزئات، بالإضافة إلي تعيين العمليات الجبرية على الشبكة، وذلك بدلالة العوامل الموجبة للعدد الصحيح n. وتتلخص بما يلي:
- إذا كان Qn فضاء الحالات لحاسبة دورية منتهية An، و π تجزئة لـ Qn، عندئذ π تشكل (sp –تجزئة) للفضاء Qn إذا وفقط إذا كان r,sπ = π بالنسبة لبعض الأعداد الصحيحة r, s حيث r.s = n.
- إذا كانت r',s'π و r,sπ SP)– تجزئتان) منفصلتان لفضاء الحالات Qn لحاسبة دورية منتهية An، عندئذ يكون = 0 r',s'π o r,sπ إذا وفقط إذا كان .GCD(r,r')=1
- يوجد SP)– تجزئتين) منفصلتين غير تافهتين ''π و 'π لفضاء الحالات Qn (2n ≥ )، بحيث يكون 0=''π'oπ، إذا وفقط إذا كان العدد n قابلاً للقسمة على عددين أوليين مختلفين على الأقل.
- إذا كان Qn فضاء الحالات لحاسبة دورية منتهية الحالات (n ≥ 2)، و r, s, r', s' أعداداً طبيعية، بحيثr.s=n=r'.s' و D=D(s, s') ترمز للمضاعف المشترك الأصغر للعددين s, s'، وكذلكd = d(s, s') القاسم المشترك الأكبر لهما، عندئذ تتحقق المساويتان التاليتان:
= π n/D, D ' r',s π o r,s π
= π n/d , d ' r',s π + r,s π
The decomposition of the sublattice of SP-Partitions of the state space Qn of the finite-state cyclic machine An, when n is a natural number ≥ 2 and An=(Qn, X, Y, δn, λn). A simple characterization of these SP-Partitions, as well as the Lattice operations, is obtained in terms of the positive factors of n. We brief these results as follows:
- If Qn is the state space for the finite–state cyclic machine An and π is a partition of Qn, then π is an SP-partition of Qn if, and only if, π = π r, s for some positive integers r, s such that r.s = n.
- If π r, s , π r' ,s' are two distinct SP–partitions of the state space Qn then π r,s o π r',s' = 0 (the zero partition) if, and only if, GCD (r, r') = 1.
- For n ≥ 2, there exist two distinct non-trivial partitions π 'and π "of the state space Qn such that, π ' o π " = 0 if, and only if, n is divisible by at least two distinct primes.
- If Qn is the state space of the finite–state cyclic machine (n ≥ 2 ), and r, s, r', s' natural numbers such that r.s = n = r'. s', and D = D (s , s') denote the least common multiple of common divisor of s and s' and d = d (s , s') be their greatest common divisor, then the following equations hold:
= πn/D , D ' r',sπ o r,sπ
= πn/d , d ' r',sπ + r,sπ
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors retain the copyright and grant the right to publish in the magazine for the first time with the transfer of the commercial right to the Tishreen University Journal -Basic Sciences Series
Under a CC BY- NC-SA 04 license that allows others to share the work with of the work's authorship and initial publication in this journal. Authors can use a copy of their articles in their scientific activity, and on their scientific websites, provided that the place of publication is indicted in Tishreen University Journal -Basic Sciences Series . The Readers have the right to send, print and subscribe to the initial version of the article, and the title of Tishreen University Journal -Basic Sciences Series Publisher
journal uses a CC BY-NC-SA license which mean
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.