تقريب التوابع إلى كثيرات حدود على أقواس ريس
الملخص
ندرس في هذا العمل مسألة تقريب التوابع العقدية التي تنتمي إلى الفضاء على المنحنيات المفتوحة والتي تنتمي إلى أسرة واسعة من المنحنيات وهي أسرة منحنيات ريس. وقد استخدمنا من أجل ذلك بعض خواص تحويل جوكوفسكي و تأثيره في أسرة منحنيات ريس.
In this paper, we will study the approximation of complex functions from space on the open curves which are related to the Reisz class of Curves.
For that end, we have used some of Joukowski transformation properties and his effect on Reisz Curves.
التنزيلات
منشور
كيفية الاقتباس
إصدار
القسم
الرخصة

هذا العمل مرخص بموجب Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
-
يحتفظ المؤلفون بحقوق النشر ويمنحون حق النشر في المجلة لأول مرة مع نقل الحقوق التجارية إلى مجلة جامعة تشرين للبحوث والدراسات العلمية-سلسلة العلوم الأساسية بموجب الترخيص CC BY-NC-SA 04 الذي يسمح للأخرين بمشاركة العمل مع الإقرار بتأليف العمل والنشر الأولي في هذه المجلة. يمكن للمؤلفين أن يستخدموا نسخة من مقالاتهم في نشاطهم العملي وعلى مواقع علمية خاصة بهم على أن يتم الإشارة إلى مكان النشر في مجلة جامعة تشرين للبحوث والدراسات العلمية-سلسلة العلوم الأساسية ويمتلك القراء الحق بنسخ ونقل من المقالات والمزج والإضافة إلى اعمالهم العلمية والاستشهاد مع ذكر مجلة جامعة تشرين للبحوث والدراسات العلمية-سلسلة العلوم الأساسية الناشر .
- المجلة تستخدم ترخيص CC BY-NC-SA مما يعني
- الإسناد - يجب عليك منح الائتمان المناسب ، وتقديم ارتباط إلى الترخيص ، وبيان ما إذا تم إجراء تغييرات.
- يمكنك القيام بذلك بأي طريقة معقولة ، ولكن ليس بأي طريقة توحي بأن المرخص يؤيدك أو يؤيد استخدامك.
- غير تجاري - لا يجوز لك استخدام المواد لأغراض تجارية -
- . ShareAlike إذا قمت بإعادة مزج المواد أو تحويلها أو البناء عليها ، فيجب عليك توزيع مساهماتك بموجب نفس الترخيص مثل الأصل. لا قيود إضافية - لا يجوز لك تطبيق الشروط القانونية أو التدابير التكنولوجية التي تقيد الآخرين قانونًا من فعل أي شيء يسمح به الترخيص
- .