فضاء الطاقة لمؤثر هرميت في R^n وفضاءات سوبوليڤ موافقة
Abstract
ندرس في هذا البحث فضاء الطاقة الموافق لمؤثر هرميت التفاضلي , ونبين أنه فضاء هيلبرت مع جداء داخلي مناسب، وهو فضاء جزئي من الفضاء .
ثم ندرس قوى هذا المؤثر , حيث نشكل بالاعتماد على النظرية الطيفية , ونبين أن المؤثر له خواص مشابهة للمؤثر من أجل عدد حقيقي موجب s.
لذلك يمكن تشكيل فضاءات هيلبرت جديدة ,هي بنفس الوقت فضاءات الطاقة لقوى المؤثر , وهي من نمط فضاءات سوبوليڤ. ويمكن التعميم إلى الفضاءات من أجل .
In this paper we study the energy space of the Hermite differential operator
and prove that it is a Hilbert space with a suitable inner product. Then we construct the powers of , denoted by , by using the spectral theory . We will see that has similar properties as for real numbers s > o, therefore we can construct new Hilbert spaces which are the energy spaces of powers of . They are Sobolev spaces.
We can also generalize those spaces to for .
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors retain the copyright and grant the right to publish in the magazine for the first time with the transfer of the commercial right to the Tishreen University Journal -Basic Sciences Series
Under a CC BY- NC-SA 04 license that allows others to share the work with of the work's authorship and initial publication in this journal. Authors can use a copy of their articles in their scientific activity, and on their scientific websites, provided that the place of publication is indicted in Tishreen University Journal -Basic Sciences Series . The Readers have the right to send, print and subscribe to the initial version of the article, and the title of Tishreen University Journal -Basic Sciences Series Publisher
journal uses a CC BY-NC-SA license which mean
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.