Finding Various Exact Solutions for Zeldovich Equation in the Sense of Conformable Fractional Derivative with Constant Coefficients
Abstract
This research aims to find explicit exact solutions for fractional partial differential Zeldovich equation with constant coefficients in the sense of conformable fractional derivative, by using the substitution Ricatti ordinary differential equation method and Feng's first integral method. These two methods give three types of analytical solutions, complex hyperbolic solutions, and complex trigonometric solutions and rational solutions according to the coefficients. The two methods are efficient and reliable, and its can be used as an alternative to establish new solutions of different types of fractional differential equations applied in mathematical physics.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors retain the copyright and grant the right to publish in the magazine for the first time with the transfer of the commercial right to the Tishreen University Journal -Basic Sciences Series
Under a CC BY- NC-SA 04 license that allows others to share the work with of the work's authorship and initial publication in this journal. Authors can use a copy of their articles in their scientific activity, and on their scientific websites, provided that the place of publication is indicted in Tishreen University Journal -Basic Sciences Series . The Readers have the right to send, print and subscribe to the initial version of the article, and the title of Tishreen University Journal -Basic Sciences Series Publisher
journal uses a CC BY-NC-SA license which mean
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.