Automated Segmentation of Infected Regions in Chest CT Images of COVID-19 Patients using Supervised Naïve Gaussian Bayes Classifier
Keywords:
Medical image analysis, Image segmentation, COVID-19, CT imaging, Naïve Bayes classifier.Abstract
In this paper, one hundred chest Computed Tomography images of COVID-19 patients were used to build and test Naïve Gaussian Bayes classifier for discriminating normal from abnormal tissues. Infected areas in these images were manually segmented by an expert radiologist. Pixel grey value, local entropy and Histograms of Oriented Gradients HOG were extracted as features for tissue image classification. Based on five-folds classification experiments, the accuracy score of the classifier in this fold reached around 79.94%. Classification was more precise (85%) in recognizing normal tissue than abnormal tissue (63%). The effectiveness in identifying positive labels was also more evident with normal tissue than the abnormal one.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 ttps://creativecommons.org/licenses/by-nc-sa/4.0/
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors retain the copyright and grant the right to publish in the magazine for the first time with the transfer of the commercial right to Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series
Under a CC BY- NC-SA 04 license that allows others to share the work with of the work's authorship and initial publication in this journal. Authors can use a copy of their articles in their scientific activity, and on their scientific websites, provided that the place of publication is indicted in Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series . The Readers have the right to send, print and subscribe to the initial version of the article, and the title of Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series Publisher
journal uses a CC BY-NC-SA license which mean
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.