Performance Evaluation of Algorithms of Dynamic Rendezvous Point Relocation
Abstract
The Protocol Independent Multicast - Sparse Mode (PIM-SM) uses one center (referred here as the Rendezvous Point “RP”) for all sources in a multicast group. PIM-SM distributes the multicast traffic of a source through a so-called shared distribution tree, whose root is at a predefined core called Rendezvous Point (RP). It also builds source-specific trees to the sources whose data rates exceed a defined threshold. In the literature, several investigations are done to improve and provide an efficient mechanism for the dynamic relocation of the RP depending on the sources or the members of the multicast group. In this paper, we extend the investigation of three search algorithms used to find the optimal RP position. To evaluate the performance of these algorithms, Estimated Tree Cost (ETC) and our improvement Enhanced Estimated Tree Cost (EETC), are used. The reason behind our choice these two methods is a comparative investigation of the RP-selection methods proposed in the literature. From the comparison we can see that ETC finds the most optimal position of the rendezvous point. The Hill-Climbing algorithm and the standard PIM-SM protocol with static RP-selection are used as a reference for comparison. Our algorithms result in a lower network load compared to RP-selection algorithm. However, they need additional control messages.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Sttps://creativecommons.org/licenses/by-nc-sa/4.0/
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors retain the copyright and grant the right to publish in the magazine for the first time with the transfer of the commercial right to Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series
Under a CC BY- NC-SA 04 license that allows others to share the work with of the work's authorship and initial publication in this journal. Authors can use a copy of their articles in their scientific activity, and on their scientific websites, provided that the place of publication is indicted in Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series . The Readers have the right to send, print and subscribe to the initial version of the article, and the title of Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series Publisher
journal uses a CC BY-NC-SA license which mean
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.