Short Term Load Forecasting for Lattakia City Using Artificial Neural Networks (ANNs)
Abstract
يتناول بحثنا هذا جانباً محدداً من عمليات التنبؤ بالحمولات الكهربائية، وهو التنبؤ قصير الأمد بالحمولات الكهربائية (STLF-Short Term load Forecasting)، وذلك باقتراح منظومة تنبؤ قصير الأمد للطلب على الحمل الكهربائي باستخدام الذكاء الصنعي، فقد جرى التركيز في عملية التنبؤ على استخدام الشبكات العصبية الصنعية (ANN-Artificial neural network) التي تبني خوارزميتها المعقدة؛ لترفع مستوى الأداء للمنظومة.
استناداً إلى المنظومة المقترحة صُمِمَ برنامج بلغة "MATLAB"؛ بغية محاكاة عملها، وقمنا بالتيقّن من عمل هذا البرنامج اعتماداً على معطيات ذروة الحمل الساعي للطاقة الكهربائية المستهلكة في مدينة اللاذقية من تاريخ 1-6-2010 حتى تاريخ 1-7-2010 التي حصلنا عليها من المؤسسة العامة لاستثمار الطاقة الكهربائية، ونقلها، التابعة لوزارة الكهرباء في الجمهورية العربية السورية، وتبينّ من خلال النتائج التي حصلنا عليها أنّ البرنامج ذو كفاءة عالية جداً، ويصلح لتقدير الطلب بدقة حسابية عالية، ومقبولة في التطبيقات.
This paper deals with certain aspect of electrical loads forecasting process which is the short term load forecasting (STLF) through proposing a short term forecasting system for the electrical load demand by employing the artificial neural networks which build its algorithm to boost the performance and to increase the noise immunity of the system.
Based on the proposed system a (MATLAB) language- software has been designed with the objective of simulating its function, we made sure of effective function of this software based on the hourly load apex data of electrical energy consumed in Lattakia city from the date of 01/6/2010 till the date of 01/7/2010 which was obtained from the general organization of electrical power, a subsidiary of the ministry of electricity in Syria. The results we concluded revealed that the software is highly efficient and capable to assess the load demand in a very high and acceptable mathematical accuracy in practice.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Attps://creativecommons.org/licenses/by-nc-sa/4.0/

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors retain the copyright and grant the right to publish in the magazine for the first time with the transfer of the commercial right to Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series
Under a CC BY- NC-SA 04 license that allows others to share the work with of the work's authorship and initial publication in this journal. Authors can use a copy of their articles in their scientific activity, and on their scientific websites, provided that the place of publication is indicted in Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series . The Readers have the right to send, print and subscribe to the initial version of the article, and the title of Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series Publisher
journal uses a CC BY-NC-SA license which mean
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.