A Hybrid ARIMA and Artificial Neural Networks (ANN) Model for Daily Maximum and Minimum Temperature Forecast
Abstract
Prediction of the daily maximum and minimum temperatures is one of the most important topics in climate research and all vital areas. It can help managements in the economic and strategic planning and decision-making.
This research use time series single models of linear Box- Jenkins ARIMA (p,d,q) and non-linear ANN models and then integrates them into the ARIMA-ANN model, assuming series includes linear component estimated using a Box- Jenkins (ARIMA) model, and a non-linear component represented by model errors (Residual) can be estimated using ANN models to obtain the best and most accurate future prediction for time series.
The selected model to present daily minimum temperature serie In Al-Basel Station including linear model ARIMA (1,1,1) and non- linear model ANN (1-26-1); while model ARIMA (0,1,2) and model ANN (1-17-1) were selected to present daily maxmum temperature serie, The results showed that (ARIMA-ANN) model was superior to other models according criteria of accuracy check (R, RMSE, MAE, MAPE).
التنبؤ بدرجات الحرارة العظمى والصغرى من الموضوعات الهامة في المناخ لكافة المجالات الحيوية، إذ يساعد الإدارات في التخطيط الاقتصادي والاستراتيجي واتخاذ القرارات المستقبلية.
تناول هذا البحث دراسة لاستخدام نماذج مفردة من: نماذج بوكس-جينكنز ARIMA (p,d,q) الخطية، ونماذج الشبكات العصبية الاصطناعية (ANN) اللاخطية، ومن ثم الدمج بينهما في نموذج (ARIMA-ANN)، على فرض أن السلسلة تضم مركبة خطية يتم تقديرها باستخدام نموذج (ARIMA)، ومركبة غير خطية ممثلة بأخطاء النموذج (Residual) يمكن تقديرها باستخدام نماذج (ANN)، وذلك للحصول على أفضل وأدق التنبؤات المستقبلية للسلاسل الزمنية.
النموذج المُختار لتمثيل درجة الحرارة الصغرى في محطة سد الباسل يتضمن نموذج خطي ARIMA (1,1,1) ونموذج غير خطي ANN(1-26-1)، بينما اختير نموذج ARIMA (0,1,2)، ونموذج ANN(1-17-1) لتمثيل درجة الحرارة العظمى، وأظهرت النتائج تفوق نموذج (ARIMA-ANN) على النماذج الأخرى وفق معايير ضبط الدقة ((R, RMSE, MAE, MAPE.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Gttps://creativecommons.org/licenses/by-nc-sa/4.0/

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors retain the copyright and grant the right to publish in the magazine for the first time with the transfer of the commercial right to Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series
Under a CC BY- NC-SA 04 license that allows others to share the work with of the work's authorship and initial publication in this journal. Authors can use a copy of their articles in their scientific activity, and on their scientific websites, provided that the place of publication is indicted in Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series . The Readers have the right to send, print and subscribe to the initial version of the article, and the title of Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series Publisher
journal uses a CC BY-NC-SA license which mean
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.