إضافة جديدة في استنباط التكاملات المحددة
Abstract
يتضمن هذا العمل طريقة جديدة لاستنباط التكاملات المحددة, والطريقة مبنية على تمثيل الإشارات
(آو التوابع) في مجالين متعاكسين في البعد: الزمن والتردد, والفضل عائد إلى أن التمثيل يتم وفق تحويل فوريير المعرف بصيغ تكاملية.
أن الطريقة المقترحة بسيطة نسبيا ولكنها – في الواقع - وسيلة فعالة لإنشاء مكتبة عريضة من التكاملات المحددة مع إمكانية توسيع المكتبة أفقياً وشاقولياً دون حدود نظرية.
في التوسع الأفقي المعتبر نحاول الاستفادة من مختلف خواص ونظريات تحويل فوريير, وقد اعتبرت جملة من N تابعاً أولياً فوجدنا أنه بالإمكان استنباط أضعاف هذا العدد من التكاملات المحددة, وتتضمن الملاحق المرفقة بعض النتائج هي أمثلة وافية على مختلف الحالات المعتبرة .
We propose a new method to derive definite integrals. The method is based on representation of signals (or functions) in two reciprocal domains .This is because the signals are represented by Fourier Transform, F.T. which is defined as integral formula.
The proposed method is relatively simple but it is a powerful tool to construct a big library of definite integrals, and to expand the library horizontally and vertically without any theoretical limits. In horizontal expansion (discussed here) we try to use the different properties and theories of F.T., and if we consider a set of N primary functions, we can derive multiple N of definite integrals .The appendices include some results which can be considered as examples to different cases in text.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 ttps://creativecommons.org/licenses/by-nc-sa/4.0/
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors retain the copyright and grant the right to publish in the magazine for the first time with the transfer of the commercial right to Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series
Under a CC BY- NC-SA 04 license that allows others to share the work with of the work's authorship and initial publication in this journal. Authors can use a copy of their articles in their scientific activity, and on their scientific websites, provided that the place of publication is indicted in Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series . The Readers have the right to send, print and subscribe to the initial version of the article, and the title of Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series Publisher
journal uses a CC BY-NC-SA license which mean
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.