تقريب الدوال العقدية من فضاء ليبيغ الموزنL_p (Γ,V) على منحنيات كارلسون
Abstract
درسنا في هذا البحث مسألة تقريب الدوال العقدية من فضاء ليبيغ الموزن حيث و (وزن ماكنهوبت)، إلى دوال كسرية متعلقة بكثيرات حدود p – فابير وذلك على أسرة واسعة من المنحنيات تدعى منحنيات كارلسون، كما ويعد هذا العمل بمثابة متابعة لما قام به الباحثان Israfilov و Testici عام 2014 في [4]، حيث درسا تقريب الدوال العقدية من فضاء سميرنوف الموزن على مناطق محاطة بمنحنيات كارلسون.
In this research, we have studied the issue of approximation of complex functions from weighted Lebesgue space ; and (Mukenhoupt weight) to rational functions by using p- Faber polynomials on large group of curves, which called Carlson curves. This is also considered as a follow-up to the work done by researchers: Israfilov and Testici in 2014 [4], where they studied approximation of functions from weighted Smirnov space on domains with a Carlson curve boundary.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors retain the copyright and grant the right to publish in the magazine for the first time with the transfer of the commercial right to the Tishreen University Journal -Basic Sciences Series
Under a CC BY- NC-SA 04 license that allows others to share the work with of the work's authorship and initial publication in this journal. Authors can use a copy of their articles in their scientific activity, and on their scientific websites, provided that the place of publication is indicted in Tishreen University Journal -Basic Sciences Series . The Readers have the right to send, print and subscribe to the initial version of the article, and the title of Tishreen University Journal -Basic Sciences Series Publisher
journal uses a CC BY-NC-SA license which mean
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.