دراسة استقرارية النقاط السرجية لمسائل القيم القصوى لدوال محدبة/ مقعرة
Abstract
الهدف من البحث هو دراسة استقرار النقاط السرجية لمسائل القيم القصوى لدوال محدبة / مقعرة حيث نقوم في هذا البحث بتعميم بعض النتائج المتعلقة بالدوال المحدبة (المقعرة) ذات المتحول الواحد والتي درست من قبل أتوش و ويتس إلى دوال محدبة / مقعرة بمتحولين ودراسة العمليات الجبرية فوق/ تحت- البيانية وذلك بتحويل المسألة إلى مسألتين (مسألة قيم صغرى ومسألة قيم عظمى) وهذا يتم باستخدام الدوال الحدية الدنيا والعليا لدالة محدبة / مقعرة .
The purpose of the research is to study the stability of thesaddle points of min\max problems of convex \ concave functions . In this research we will generalize some results related to convex (concave) functions which have been studied by Attouch and Wits to convex \ concave functions , besides to studying the epi\hypo graphical algebraic operations , for that we will divide the problem into two problems (min problem and max problem) and that will be done with using the upper marginal function and lower marginal function of convex \ concave function .
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors retain the copyright and grant the right to publish in the magazine for the first time with the transfer of the commercial right to the Tishreen University Journal -Basic Sciences Series
Under a CC BY- NC-SA 04 license that allows others to share the work with of the work's authorship and initial publication in this journal. Authors can use a copy of their articles in their scientific activity, and on their scientific websites, provided that the place of publication is indicted in Tishreen University Journal -Basic Sciences Series . The Readers have the right to send, print and subscribe to the initial version of the article, and the title of Tishreen University Journal -Basic Sciences Series Publisher
journal uses a CC BY-NC-SA license which mean
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.