التحدب الإحداثي واجتماع أربع مجموعات نجمية في R2
Abstract
يقال عن مجموعة في المستوي الإقليدي إنها محدبة إحداثياً إذا كان تقاطع أي مستقيم موازيا لأي من المحورين الإحداثيين مع مجموعة محدبة 0 و يقال عن مجموعة في المستوي الإقليدي أيضاً أنها مجموعة نجمية إذا وجدت نقطة مثل في هذه المجموعة بحيث تكون جميع القطع المستقيمة من أجل كل واقعة في وعندئذ يقال إن جميع نقاط المجموعة مرئية ضمن من النقطة .
وفي هذا البحث سوف نبرهن النظرية التالية : "إذا كانت مجموعة محدبة إحداثياً و متراصة في المستوي الإقليدي عندئذ تكون المجموعة اجتماعاً لأربع مجموعات نجمية فقط إذا وجد في أربع نقاط مثل بحيث تكون كل نقطة جبهية لـ مرئية ضمن من إحدى النقاط أو على الأقل "In the Euclidean plane, we say that the set is coordinate convex set, if and only if, any parallel line to any coordinate axes was intersected with is convex set . And we say that the set is star shaped set, if and only if, a point existed in A as (a), so that, every line segment [a, x] for all lie in A , in this case we say that every point was visible via A from a .
In this study will prove the following theory:
“If the set A is coordinate convex and compact set in the Euclidean plane then: The set A is union of four star shaped sets, if and only if, it existed in the set A four points as a,b,c,d , so that, every boundary point of A in this set will be visible from a,b,c or d at least.”
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors retain the copyright and grant the right to publish in the magazine for the first time with the transfer of the commercial right to the Tishreen University Journal -Basic Sciences Series
Under a CC BY- NC-SA 04 license that allows others to share the work with of the work's authorship and initial publication in this journal. Authors can use a copy of their articles in their scientific activity, and on their scientific websites, provided that the place of publication is indicted in Tishreen University Journal -Basic Sciences Series . The Readers have the right to send, print and subscribe to the initial version of the article, and the title of Tishreen University Journal -Basic Sciences Series Publisher
journal uses a CC BY-NC-SA license which mean
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.