المجموعة المحدبة وفق المستويات الإحداثية في R3
Abstract
يقال عن مجموعة في الفضاء الإقليدي ثلاثي البعد إنها محدبة وفق المستويات الإحداثية إذا كان تقاطع أيِّ مستوٍ موازٍ لأيٍّ من المستويات الإحداثية مع المجموعة عبارة عن مجموعة محدبة. في هذا البحث قدمنا نمطاً جديداً في التحدب وهو المجموعات المحدبة وفق المستويات الإحداثية, وحصلنا على مجموعة من النتائج والمبرهنات أهمها إثبات أن كل مجموعة محدبة وفق المستويات الإحداثيةهي مجموعة محدبة, وعرضنا العديد من الأمثلة التي توضح العلاقة بين المجموعات النجمية والمتراصة وأحادية الترابط والمحدبة إحداثياً والمحدبة وفق المستويات الإحداثية. Let A be a set in R3. A is called a Convex set in accordance with the coordinate planes ,if and only if ,any parallel plane to any coordinate planes was intersected with A is convex set . In this research we introduced a new style in the convexity is convexity in accordance with the coordinate planes ,and got a some of results and theorems, the most important : proving that every convex set in accordance with the coordinate planes is convex set, and we have offered many examples that illustrate the relationship between starshaped set, compact set , simply connected set , coordinate convex set and convex set in accordance with the coordinate planes .Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors retain the copyright and grant the right to publish in the magazine for the first time with the transfer of the commercial right to the Tishreen University Journal -Basic Sciences Series
Under a CC BY- NC-SA 04 license that allows others to share the work with of the work's authorship and initial publication in this journal. Authors can use a copy of their articles in their scientific activity, and on their scientific websites, provided that the place of publication is indicted in Tishreen University Journal -Basic Sciences Series . The Readers have the right to send, print and subscribe to the initial version of the article, and the title of Tishreen University Journal -Basic Sciences Series Publisher
journal uses a CC BY-NC-SA license which mean
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.