دراسة استقرارية النقاط السرجية لمسائل القيم القصوى لدوال محدبة/ مقعرة
الملخص
الهدف من البحث هو دراسة استقرار النقاط السرجية لمسائل القيم القصوى لدوال محدبة / مقعرة حيث نقوم في هذا البحث بتعميم بعض النتائج المتعلقة بالدوال المحدبة (المقعرة) ذات المتحول الواحد والتي درست من قبل أتوش و ويتس إلى دوال محدبة / مقعرة بمتحولين ودراسة العمليات الجبرية فوق/ تحت- البيانية وذلك بتحويل المسألة إلى مسألتين (مسألة قيم صغرى ومسألة قيم عظمى) وهذا يتم باستخدام الدوال الحدية الدنيا والعليا لدالة محدبة / مقعرة .
The purpose of the research is to study the stability of thesaddle points of min\max problems of convex \ concave functions . In this research we will generalize some results related to convex (concave) functions which have been studied by Attouch and Wits to convex \ concave functions , besides to studying the epi\hypo graphical algebraic operations , for that we will divide the problem into two problems (min problem and max problem) and that will be done with using the upper marginal function and lower marginal function of convex \ concave function .
التنزيلات
منشور
كيفية الاقتباس
إصدار
القسم
الرخصة

هذا العمل مرخص بموجب Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
-
يحتفظ المؤلفون بحقوق النشر ويمنحون حق النشر في المجلة لأول مرة مع نقل الحقوق التجارية إلى مجلة جامعة تشرين للبحوث والدراسات العلمية-سلسلة العلوم الأساسية بموجب الترخيص CC BY-NC-SA 04 الذي يسمح للأخرين بمشاركة العمل مع الإقرار بتأليف العمل والنشر الأولي في هذه المجلة. يمكن للمؤلفين أن يستخدموا نسخة من مقالاتهم في نشاطهم العملي وعلى مواقع علمية خاصة بهم على أن يتم الإشارة إلى مكان النشر في مجلة جامعة تشرين للبحوث والدراسات العلمية-سلسلة العلوم الأساسية ويمتلك القراء الحق بنسخ ونقل من المقالات والمزج والإضافة إلى اعمالهم العلمية والاستشهاد مع ذكر مجلة جامعة تشرين للبحوث والدراسات العلمية-سلسلة العلوم الأساسية الناشر .
- المجلة تستخدم ترخيص CC BY-NC-SA مما يعني
- الإسناد - يجب عليك منح الائتمان المناسب ، وتقديم ارتباط إلى الترخيص ، وبيان ما إذا تم إجراء تغييرات.
- يمكنك القيام بذلك بأي طريقة معقولة ، ولكن ليس بأي طريقة توحي بأن المرخص يؤيدك أو يؤيد استخدامك.
- غير تجاري - لا يجوز لك استخدام المواد لأغراض تجارية -
- . ShareAlike إذا قمت بإعادة مزج المواد أو تحويلها أو البناء عليها ، فيجب عليك توزيع مساهماتك بموجب نفس الترخيص مثل الأصل. لا قيود إضافية - لا يجوز لك تطبيق الشروط القانونية أو التدابير التكنولوجية التي تقيد الآخرين قانونًا من فعل أي شيء يسمح به الترخيص
- .