تقييم أداء محطات معالجة مياه الصرف الصحي باستخدام الشبكات العصبونية الصنعية (ANN)
Abstract
يعد وضع نماذج متطورة لوحدات معالجة مياه الصرف الصحي Wastewater Treatment Plants أمر أساسي من أجل توفير أدوات لتقييم أدائها والتنبؤ به، وتشكل أساسا للتحكم في تشغيل وسيرورة عملية المعالجة. هذا من شأنه التقليل من تكاليف عملية التشغيل والمراقبة وتقييم استقرار التوازن البيئي. تركّز هذه الورقة العلمية على استخدام طريقة الشبكات العصبونية الصنعية (ANN)Artificial Neural Network ذات تقنية التغذية إلى الأمام والانتشار العكسي للخطأ، حيث بُنيت النماذج الرياضية باستخدام الأداة nntool الملحقة ببرنامج Matlab لتحديد العلاقة بين بارامترات التلوث المختلفة وللتنبؤ بأداء وحدة معالجة بلدة مرج معيربان لمعالجة مياه الصرف الصحي WWTP. اعتمدت النماذج على بيانات مؤشرات التلوث التي تم جمعها خلال البحث على مدى ثلاثة أعوام وهي المؤشرات الرئيسية التي تشمل الطلب على الأكسجين الكيميائي (COD) والطلب على الأكسجين البيوكيميائي (BOD5)، والمؤشرات المساعدة التي تضمنت كمية المواد الصلبة العالقة الكلية (TSS)، درجة الحرارة (T) ودرجة الحموضة (pH). تشير الدراسة إلى أن تطبيق طريقة الـ ANN تمّكن من التنبؤ بأداء محطة المعالجة مع معامل الارتباط (R) بين متغيرات الخرج المقاسة والمحسوبة (المُتنبأ بها) وصل إلى (88%) بالنسبة لنموذج الـ COD، (85%) بالنسبة لنموذج الـ BOD5 و (86%) بالنسبة لنموذج الـ COD&BOD5. وبالنتيجة، توفر هذه النماذج أداة فعالة ومهمة لفهم وتحليل ومحاكاة سلوك الظواهر غير الخطية في عمليات المعالجة لمياه الصرف الصحي، ويمكن استخدمها كأداة قيّمة ومفيدة لمشغليها وصانعي القرار في هذه المنشأة البيئية الحيوية. Developed models for Wastewater Treatment Plants WWTP is essential in order to provide tools for assessment and predicting there’s performance and to form a basis for controlling the operation of the process. This would minimize the operation and monitoring costs, and assess the stability of environmental balance. This paper focuses on using an Artificial Neural Network (ANN) approach with a Feed-Forward Back-Propagation, mathematical models have been created by using nntool built-in MATLAB Software to determine the relationship between various parameters of pollution and to predict the performance of the Merge Mouerbain WWTP town. Models based on the pollution indicators data that have been collected during a research over three-year period, the main indicators that include Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD5), and auxiliary Indicators which included the amount of Total Suspended Solids (TSS), Temperature (T) and the degree of acidity or alkalinity (pH). The study signifies that the ANN can predict the plant performance with correlation coefficient (R) between the observed and predicted output variables reached up to (88%) for the COD model, (85%) for the BOD5 model and (86%) for the COD&BOD5 together model. Finally, ANN models provides an effective analyzing tool to comprehend and simulate the non-linear behavior of the plant, and it can be used as a valuable performance assessment tool for plant operators and decision makers.Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 ttps://creativecommons.org/licenses/by-nc-sa/4.0/
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors retain the copyright and grant the right to publish in the magazine for the first time with the transfer of the commercial right to Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series
Under a CC BY- NC-SA 04 license that allows others to share the work with of the work's authorship and initial publication in this journal. Authors can use a copy of their articles in their scientific activity, and on their scientific websites, provided that the place of publication is indicted in Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series . The Readers have the right to send, print and subscribe to the initial version of the article, and the title of Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series Publisher
journal uses a CC BY-NC-SA license which mean
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.