تطبيق نموذج الانحدار الذاتي غير الخطي للشبكات العصبونية للتنبؤ بعكارة مياه الشرب في محطة تنقية السن
Abstract
Drinking water turbidity measuring is significant indicator of water quality, and represents a primary test to evaluate the stability of drinking water purification plant. Artificial neural networks (ANN) provide efficient tool to deal with the complex, dynamic and non-linear nature of purification processes. They have the ability to response to various instant changes in parameters influencing water purification.
In this research a feed-forward back-propagation non-linear autoregressive neural networks with exogenous variables (NARX) were tested to predict the effluent turbidity from Al-Sin drinking water purification plant, which considered as a case study. The models were built based on daily turbidity, pH and conductivity of raw water data as well as daily rainfall over the reservoir while the daily effluent turbidity data were used for verify the performance accuracy of each network. The results of this research confirm that NARX models offers good results in modeling and simulating the non-linearity behavior of water turbidity as well as to predict its values. These models can be used in a permanently evaluation of the performance of Al-Sin drinking water purification in order to achieve the stabilization and supply a significant sector of the Syrian coast with drinking water.
يعدّ قياس عكارة مياه الشرب مؤشراً هاماً على جودة المياه، ويمثل اختباراً أساسياً لتقييم استقرار عمل محطة تنقية مياه الشرب. توفّر الشبكات العصبونية الصنعية أداةً فعالة للتعامل مع الطبيعة المعقدة، والديناميكية، وغير الخطية لعمليات التنقية، ولديها القدرة على الاستجابة للتغيرات الآنية المختلفة للبارامترات المؤثرة في تنقية المياه.
تم في هذا البحث اختبار شبكات الانحدار الذاتي غير الخطي مع متغيرات خارجية Non-Linear Autoregressive Neural Networks with Exogenous Variables (NARX)، وذات التغذية الأمامية، والانتشار العكسي للخطأ للتنبؤ بعكارة المياه الخارجة من محطة تنقية مياه الشرب في السن التي اعتُمدت كحالة دراسة. بُنيت النماذج بالاعتماد على بيانات عكارة، وناقلية، وpH مياه بحيرة السن الخام الداخلة إلى المحطة بالإضافة إلى بيانات الهطول المطري فوق حوض التغذية، واستخدمت بيانات عكارة المياه الخارجة من المحطة المقاسة يومياً للتحقق من دقة أداء الشبكة العصبونية الصنعية.
أثبتت نتائج الدراسة أن النموذج المستخدم يُعطي نتائج جيدة في نمذجة ومحاكاة السلوك غير الخطي للعكارة، والتنبؤ بقيمها، ويمكن استخدامه في التقييم المستمر لأداء محطة تنقية مياه الشرب في السن بما يحقق استقراراً في عملها، وفي تزويد قطاع كبير من الساحل السوري بمياه الشرب.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 �ttps://creativecommons.org/licenses/by-nc-sa/4.0/

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors retain the copyright and grant the right to publish in the magazine for the first time with the transfer of the commercial right to Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series
Under a CC BY- NC-SA 04 license that allows others to share the work with of the work's authorship and initial publication in this journal. Authors can use a copy of their articles in their scientific activity, and on their scientific websites, provided that the place of publication is indicted in Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series . The Readers have the right to send, print and subscribe to the initial version of the article, and the title of Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series Publisher
journal uses a CC BY-NC-SA license which mean
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.