تصميم خوارزمية استيفاء تحليل رقمي تفاضلي عالية الدقة
Abstract
تبحث هذه الورقة في تحليل و مقارنة دقة التوليد بخوارزميات الاستيفاء المستندة على التحليل الرقمي التفاضلي ، ويتم طرح خوارزمية جديدة تتصف بدقة توليد أعلى من جميع الخوارزميات المعروفة حالياً. تعتمد المقارنة على حساب معين مصفوفة الانتقال T ، حيث ترتبط الإحداثيات الحالية Pi بالإحداثيات الآتية Pi+1 بالعلاقة العودية Pi+1=T.Pi، ويكون بشكل عام .
وتعتمد الخوارزمية المقترحة على فرض قيمة cosθ بحيث تساوي، وحساب sinθ بحيث يكون معين مصفوفة الانتقال أقرب ما يمكن للواحد الصحيح ، وتستخدم مصفوفة الانتقال في حساب إحداثيات أول نقطة مولدة، وتحسب إحداثيات باقي النقاط من علاقة هنرييه:
{ Pi+2= (2cosθ).Pi+1-Pi } i >0 .
In this paper the writer presents a new algorithm for circular interpolation DDA. The accuracy of this algorithm is much higher than all others compared in this paper.
The comparison in algorithms of interpolation depends on calculating a determinant of the rotation matrix T. We may obtain the following recurrence formula: , where {Pi} i>0 is an equidistance point sequence on circular arc and T is a rotation matrix: .
Our method is based on imposing a value of cosθ as: (cosθ ) and calculating the value of sin where the determinant |T| equals unity. This results that: .
We used cosθ and sinθ calculating the value of coordinates a single point which comes after the initial point directly. The rest of the interpolation points are calculated by Henrie's equation: { Pi+2= (2cosθ).Pi+1-Pi } i >0 .
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 ttps://creativecommons.org/licenses/by-nc-sa/4.0/
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors retain the copyright and grant the right to publish in the magazine for the first time with the transfer of the commercial right to Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series
Under a CC BY- NC-SA 04 license that allows others to share the work with of the work's authorship and initial publication in this journal. Authors can use a copy of their articles in their scientific activity, and on their scientific websites, provided that the place of publication is indicted in Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series . The Readers have the right to send, print and subscribe to the initial version of the article, and the title of Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series Publisher
journal uses a CC BY-NC-SA license which mean
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.