تكامل نماذج الشبكات العصبيّة الاصطناعيّة والخوارزميّات الجينيّة في استكمال بيانات الهطل المطري
Abstract
Accurate and reliable modeling of precipitation data is an important step in managing water and rivers, especially under the influence global climate change. This requires long time series of hydrological data, but these sequences often contain missing values.This research includes the using of artificial neural networks (ANNs) models with feed forward and back propagation of error with genetic algorithms (GAs) in the process of filling gaps in daily precipitation data, where genetic algorithms were used to determine the optimal structure of the artificial neural network, after that artificial neural networks were trained using the back propagation algorithm, in order to obtain the best performance of the artificial neural network models (ANNs) in predicting the lost values of daily precipitation, thus obtaining complete time series of daily precipitation in the study area.
The values of root mean square errors and correlation coefficients were used to evaluate the performance of the models and compare them according to the different input and output values of the meteostations (Satha -Ain Al-Krum-Al-Kareem-Al-Sakilibia) during the period (1994-2002), simulating the various possible losses of data from the meteostation. This study recommends the application of hybrid systems of artificial intelligence models to improve the efficiency of predicting models of weather factors and other water resources factors in different regions of Syria.
لا شك أن نمذجة الأمطار بدقة وموثوقية هي خطوة هامة في إدارة المياه والأنهار، ومواجهة تغيرات المناخ العالمية، وهذا يتطلب سلاسل طويلة من البيانات الهيدرولوجية، غير أن هذه السلاسل في كثير من الأحيان تحوي على قيم مفقودة.
يتضمن هذا البحث استخدام نماذج الشبكات العصبية الاصطناعية ذات التغذية الأمامية والانتشار العكسي للخطأ مع الخوارزميات الجينية (GAs) في عملية ملء الثغرات في بيانات الأمطار اليومية في منطقة سهل الغاب، حيث استخدمت الخوارزميات الجينية في تحديد الهيكلية المثلى للشبكة العصبية الاصطناعية، ثم دربت مجموعة من الشبكات العصبية الاصطناعية وفق الهيكلية الناتجة باستخدام خوارزمية الانتشار العكسي للخطأ ، وذلك بهدف الحصول على أفضل أداء لنماذج الشبكات العصبية الاصطناعية (ANNs) في التنبؤ بالقيم المفقودة للأمطار اليومية، وبالتالي الحصول على سلاسل كاملة للهطل المطري اليومي في منطقة الدراسة.
لقد استُخدمت قيم جذر متوسط مربعات الأخطاء ، ومعامل الارتباط لتقييم أداء النماذج والمقارنة فيما بينها وفق مختلف قيم المدخلات والمخرجات للمحطات المطرية (شطحة – عين الكروم – الكريم – السقيلبية) خلال الفترة (2002-1994)، بحيث تحاكي مختلف حالات الفقد الممكنة للبيانات من المحطة الهدف أو المحطات المجاورة، وتوصلت هذه الدراسة إلى نتائج جيدة لجميع النماذج، وتوصي الدراسة بتطبيق الأنظمة الهجينة من نماذج الذكاء الاصطناعي لتحسين كفاءة نماذج التنبؤ بالعناصر المناخية وغيرها من العوامل المتعلقة بالموارد المائية في مناطق مختلفة من سورية.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 �ttps://creativecommons.org/licenses/by-nc-sa/4.0/

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors retain the copyright and grant the right to publish in the magazine for the first time with the transfer of the commercial right to Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series
Under a CC BY- NC-SA 04 license that allows others to share the work with of the work's authorship and initial publication in this journal. Authors can use a copy of their articles in their scientific activity, and on their scientific websites, provided that the place of publication is indicted in Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series . The Readers have the right to send, print and subscribe to the initial version of the article, and the title of Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series Publisher
journal uses a CC BY-NC-SA license which mean
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.