تقييم أداء المعاملات الإحصائية في نظم التعرف على الأنماط
Abstract
يقدم البحث دراسةً تحليلية لتقييم أداء المعاملات الإحصائية في أنظمة التعرف المعتمدة على الواصفات البيومترية مثل الوجه واليد، فيتألف هذا البحث من مرحلتين أساسيتين؛ تتضمن المرحلة الأولى استخدام المعاملات الإحصائية لاستخلاص السمات من صور الوجه، وبصمة اليد، والمحارف العربية. ويتم تحويل الصورة الرمادية إلى صورة ثنائية ومن ثم ترميزها لتحويلها إلى شعاع أحادي البعد تمهيداً لاستخلاص خمس قيم إحصائية لكل شعاع هي: المتوسط، والوسيط، والانحراف المطلق، والانحراف المعياري ومقياس النزعة المركزية. وفي المرحلة التالية تتم الاستعانة ببرنامج الأكسل لرسم السمات المستخلصة وتمثيلها وفقاً لمخططات جاهزة مسبقاً ومقارنتها معاً، وذلك بغية تحديد قدرة هذه القيم الإحصائية على التمييز بين العينات خصوصاً المتشابهة منها. وقد تم تطبيق المرحلتين على ثلاث قواعد بيانات مختلفة تتضمن صور الوجه واليد والأحرف الأبجدية. فبينت النتائجُ أنه يمكن استخدام القيم الإحصائية للتمييز بين الأنماط حتى في حالة العينات الأكثر تشابهاً.
This paper in introduces an analytic study to evaluate the performance of the statistical operators of the human recognition systems which depends on the biometrics such as face and hand. The research consists two main parts. The first uses the statistical operators to extract features from the images of face, hand, and Arabic letters. In the next part, gray scale images are transformed to binary form, then, it is encoded to one-dimensional vector as a prelude to extract five statistical attributes for each image, these attributes are: mean, median, mean absolute deviation, standard deviation, Skewness.
The Microsoft excel software is used to represent and plot the extracted features via built-in charts. These charts can illustrate the ability of the statistical features to separate between samples. We depends on feature vector consists of 10 feature which are: The two experiments are applied on three databases (face, hand and Arabic letters); they show that the statistical features are very promise to recognize between patterns even in the case of too similar samples.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 ttps://creativecommons.org/licenses/by-nc-sa/4.0/
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors retain the copyright and grant the right to publish in the magazine for the first time with the transfer of the commercial right to Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series
Under a CC BY- NC-SA 04 license that allows others to share the work with of the work's authorship and initial publication in this journal. Authors can use a copy of their articles in their scientific activity, and on their scientific websites, provided that the place of publication is indicted in Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series . The Readers have the right to send, print and subscribe to the initial version of the article, and the title of Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series Publisher
journal uses a CC BY-NC-SA license which mean
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.