Performance evaluation of controllers in software-defined networks
Keywords:
controller, control plane, data plane, flow table, software-defined networksAbstract
Decoupling the decision-making process from the data forwarding process is the heart of software-defined networks technology. One of the most important components of this technology is the controller, which is the smartest component in the network. Many of the controllers have been developed since the technology originated, and many researches have been done to compare the performance of these controllers for productivity, delay and protection.
And due to the importance of selecting the appropriate controller according to different parameters and network states, we studied the performance of four controllers: Floodlight, Beacon, Nox, RYU in terms of productivity, RTT, time of establishing connection with an OpenFlow switch and the time for adding an input to the switch flow table. The results showed that the Beacon control was superior in performance when the number of switches in the network was equal to the number of processor cores used by the controller. For RTT and the time needed to add an input to the flow table, the NOX controller achieved less time. Finally, the Floodlight controller was the best in terms of establishing connection with the switch because it needed less time.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 �ttps://creativecommons.org/licenses/by-nc-sa/4.0/

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors retain the copyright and grant the right to publish in the magazine for the first time with the transfer of the commercial right to Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series
Under a CC BY- NC-SA 04 license that allows others to share the work with of the work's authorship and initial publication in this journal. Authors can use a copy of their articles in their scientific activity, and on their scientific websites, provided that the place of publication is indicted in Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series . The Readers have the right to send, print and subscribe to the initial version of the article, and the title of Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series Publisher
journal uses a CC BY-NC-SA license which mean
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.